Spaces:
Running
Running
# What is this? | |
## File for 'response_cost' calculation in Logging | |
import time | |
from functools import lru_cache | |
from typing import Any, List, Literal, Optional, Tuple, Union, cast | |
from pydantic import BaseModel | |
import litellm | |
import litellm._logging | |
from litellm import verbose_logger | |
from litellm.constants import ( | |
DEFAULT_MAX_LRU_CACHE_SIZE, | |
DEFAULT_REPLICATE_GPU_PRICE_PER_SECOND, | |
) | |
from litellm.litellm_core_utils.llm_cost_calc.tool_call_cost_tracking import ( | |
StandardBuiltInToolCostTracking, | |
) | |
from litellm.litellm_core_utils.llm_cost_calc.utils import ( | |
_generic_cost_per_character, | |
generic_cost_per_token, | |
select_cost_metric_for_model, | |
) | |
from litellm.llms.anthropic.cost_calculation import ( | |
cost_per_token as anthropic_cost_per_token, | |
) | |
from litellm.llms.azure.cost_calculation import ( | |
cost_per_token as azure_openai_cost_per_token, | |
) | |
from litellm.llms.bedrock.image.cost_calculator import ( | |
cost_calculator as bedrock_image_cost_calculator, | |
) | |
from litellm.llms.databricks.cost_calculator import ( | |
cost_per_token as databricks_cost_per_token, | |
) | |
from litellm.llms.deepseek.cost_calculator import ( | |
cost_per_token as deepseek_cost_per_token, | |
) | |
from litellm.llms.fireworks_ai.cost_calculator import ( | |
cost_per_token as fireworks_ai_cost_per_token, | |
) | |
from litellm.llms.gemini.cost_calculator import cost_per_token as gemini_cost_per_token | |
from litellm.llms.openai.cost_calculation import ( | |
cost_per_second as openai_cost_per_second, | |
) | |
from litellm.llms.openai.cost_calculation import cost_per_token as openai_cost_per_token | |
from litellm.llms.together_ai.cost_calculator import get_model_params_and_category | |
from litellm.llms.vertex_ai.cost_calculator import ( | |
cost_per_character as google_cost_per_character, | |
) | |
from litellm.llms.vertex_ai.cost_calculator import ( | |
cost_per_token as google_cost_per_token, | |
) | |
from litellm.llms.vertex_ai.cost_calculator import cost_router as google_cost_router | |
from litellm.llms.vertex_ai.image_generation.cost_calculator import ( | |
cost_calculator as vertex_ai_image_cost_calculator, | |
) | |
from litellm.responses.utils import ResponseAPILoggingUtils | |
from litellm.types.llms.openai import ( | |
HttpxBinaryResponseContent, | |
ImageGenerationRequestQuality, | |
OpenAIModerationResponse, | |
OpenAIRealtimeStreamList, | |
OpenAIRealtimeStreamResponseBaseObject, | |
OpenAIRealtimeStreamSessionEvents, | |
ResponseAPIUsage, | |
ResponsesAPIResponse, | |
) | |
from litellm.types.rerank import RerankBilledUnits, RerankResponse | |
from litellm.types.utils import ( | |
CallTypesLiteral, | |
LiteLLMRealtimeStreamLoggingObject, | |
LlmProviders, | |
LlmProvidersSet, | |
ModelInfo, | |
PassthroughCallTypes, | |
StandardBuiltInToolsParams, | |
Usage, | |
) | |
from litellm.utils import ( | |
CallTypes, | |
CostPerToken, | |
EmbeddingResponse, | |
ImageResponse, | |
ModelResponse, | |
ProviderConfigManager, | |
TextCompletionResponse, | |
TranscriptionResponse, | |
_cached_get_model_info_helper, | |
token_counter, | |
) | |
def _cost_per_token_custom_pricing_helper( | |
prompt_tokens: float = 0, | |
completion_tokens: float = 0, | |
response_time_ms: Optional[float] = 0.0, | |
### CUSTOM PRICING ### | |
custom_cost_per_token: Optional[CostPerToken] = None, | |
custom_cost_per_second: Optional[float] = None, | |
) -> Optional[Tuple[float, float]]: | |
"""Internal helper function for calculating cost, if custom pricing given""" | |
if custom_cost_per_token is None and custom_cost_per_second is None: | |
return None | |
if custom_cost_per_token is not None: | |
input_cost = custom_cost_per_token["input_cost_per_token"] * prompt_tokens | |
output_cost = custom_cost_per_token["output_cost_per_token"] * completion_tokens | |
return input_cost, output_cost | |
elif custom_cost_per_second is not None: | |
output_cost = custom_cost_per_second * response_time_ms / 1000 # type: ignore | |
return 0, output_cost | |
return None | |
def cost_per_token( # noqa: PLR0915 | |
model: str = "", | |
prompt_tokens: int = 0, | |
completion_tokens: int = 0, | |
response_time_ms: Optional[float] = 0.0, | |
custom_llm_provider: Optional[str] = None, | |
region_name=None, | |
### CHARACTER PRICING ### | |
prompt_characters: Optional[int] = None, | |
completion_characters: Optional[int] = None, | |
### PROMPT CACHING PRICING ### - used for anthropic | |
cache_creation_input_tokens: Optional[int] = 0, | |
cache_read_input_tokens: Optional[int] = 0, | |
### CUSTOM PRICING ### | |
custom_cost_per_token: Optional[CostPerToken] = None, | |
custom_cost_per_second: Optional[float] = None, | |
### NUMBER OF QUERIES ### | |
number_of_queries: Optional[int] = None, | |
### USAGE OBJECT ### | |
usage_object: Optional[Usage] = None, # just read the usage object if provided | |
### BILLED UNITS ### | |
rerank_billed_units: Optional[RerankBilledUnits] = None, | |
### CALL TYPE ### | |
call_type: CallTypesLiteral = "completion", | |
audio_transcription_file_duration: float = 0.0, # for audio transcription calls - the file time in seconds | |
) -> Tuple[float, float]: # type: ignore | |
""" | |
Calculates the cost per token for a given model, prompt tokens, and completion tokens. | |
Parameters: | |
model (str): The name of the model to use. Default is "" | |
prompt_tokens (int): The number of tokens in the prompt. | |
completion_tokens (int): The number of tokens in the completion. | |
response_time (float): The amount of time, in milliseconds, it took the call to complete. | |
prompt_characters (float): The number of characters in the prompt. Used for vertex ai cost calculation. | |
completion_characters (float): The number of characters in the completion response. Used for vertex ai cost calculation. | |
custom_llm_provider (str): The llm provider to whom the call was made (see init.py for full list) | |
custom_cost_per_token: Optional[CostPerToken]: the cost per input + output token for the llm api call. | |
custom_cost_per_second: Optional[float]: the cost per second for the llm api call. | |
call_type: Optional[str]: the call type | |
Returns: | |
tuple: A tuple containing the cost in USD dollars for prompt tokens and completion tokens, respectively. | |
""" | |
if model is None: | |
raise Exception("Invalid arg. Model cannot be none.") | |
## RECONSTRUCT USAGE BLOCK ## | |
if usage_object is not None: | |
usage_block = usage_object | |
else: | |
usage_block = Usage( | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
total_tokens=prompt_tokens + completion_tokens, | |
cache_creation_input_tokens=cache_creation_input_tokens, | |
cache_read_input_tokens=cache_read_input_tokens, | |
) | |
## CUSTOM PRICING ## | |
response_cost = _cost_per_token_custom_pricing_helper( | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
response_time_ms=response_time_ms, | |
custom_cost_per_second=custom_cost_per_second, | |
custom_cost_per_token=custom_cost_per_token, | |
) | |
if response_cost is not None: | |
return response_cost[0], response_cost[1] | |
# given | |
prompt_tokens_cost_usd_dollar: float = 0 | |
completion_tokens_cost_usd_dollar: float = 0 | |
model_cost_ref = litellm.model_cost | |
model_with_provider = model | |
if custom_llm_provider is not None: | |
model_with_provider = custom_llm_provider + "/" + model | |
if region_name is not None: | |
model_with_provider_and_region = ( | |
f"{custom_llm_provider}/{region_name}/{model}" | |
) | |
if ( | |
model_with_provider_and_region in model_cost_ref | |
): # use region based pricing, if it's available | |
model_with_provider = model_with_provider_and_region | |
else: | |
_, custom_llm_provider, _, _ = litellm.get_llm_provider(model=model) | |
model_without_prefix = model | |
model_parts = model.split("/", 1) | |
if len(model_parts) > 1: | |
model_without_prefix = model_parts[1] | |
else: | |
model_without_prefix = model | |
""" | |
Code block that formats model to lookup in litellm.model_cost | |
Option1. model = "bedrock/ap-northeast-1/anthropic.claude-instant-v1". This is the most accurate since it is region based. Should always be option 1 | |
Option2. model = "openai/gpt-4" - model = provider/model | |
Option3. model = "anthropic.claude-3" - model = model | |
""" | |
if ( | |
model_with_provider in model_cost_ref | |
): # Option 2. use model with provider, model = "openai/gpt-4" | |
model = model_with_provider | |
elif model in model_cost_ref: # Option 1. use model passed, model="gpt-4" | |
model = model | |
elif ( | |
model_without_prefix in model_cost_ref | |
): # Option 3. if user passed model="bedrock/anthropic.claude-3", use model="anthropic.claude-3" | |
model = model_without_prefix | |
# see this https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models | |
if call_type == "speech" or call_type == "aspeech": | |
speech_model_info = litellm.get_model_info( | |
model=model_without_prefix, custom_llm_provider=custom_llm_provider | |
) | |
cost_metric = select_cost_metric_for_model(speech_model_info) | |
prompt_cost: float = 0.0 | |
completion_cost: float = 0.0 | |
if cost_metric == "cost_per_character": | |
if prompt_characters is None: | |
raise ValueError( | |
"prompt_characters must be provided for tts calls. prompt_characters={}, model={}, custom_llm_provider={}, call_type={}".format( | |
prompt_characters, | |
model, | |
custom_llm_provider, | |
call_type, | |
) | |
) | |
_prompt_cost, _completion_cost = _generic_cost_per_character( | |
model=model_without_prefix, | |
custom_llm_provider=custom_llm_provider, | |
prompt_characters=prompt_characters, | |
completion_characters=0, | |
custom_prompt_cost=None, | |
custom_completion_cost=0, | |
) | |
if _prompt_cost is None or _completion_cost is None: | |
raise ValueError( | |
"cost for tts call is None. prompt_cost={}, completion_cost={}, model={}, custom_llm_provider={}, prompt_characters={}, completion_characters={}".format( | |
_prompt_cost, | |
_completion_cost, | |
model_without_prefix, | |
custom_llm_provider, | |
prompt_characters, | |
completion_characters, | |
) | |
) | |
prompt_cost = _prompt_cost | |
completion_cost = _completion_cost | |
elif cost_metric == "cost_per_token": | |
prompt_cost, completion_cost = generic_cost_per_token( | |
model=model_without_prefix, | |
usage=usage_block, | |
custom_llm_provider=custom_llm_provider, | |
) | |
return prompt_cost, completion_cost | |
elif call_type == "arerank" or call_type == "rerank": | |
return rerank_cost( | |
model=model, | |
custom_llm_provider=custom_llm_provider, | |
billed_units=rerank_billed_units, | |
) | |
elif ( | |
call_type == "aretrieve_batch" | |
or call_type == "retrieve_batch" | |
or call_type == CallTypes.aretrieve_batch | |
or call_type == CallTypes.retrieve_batch | |
): | |
return batch_cost_calculator( | |
usage=usage_block, model=model, custom_llm_provider=custom_llm_provider | |
) | |
elif call_type == "atranscription" or call_type == "transcription": | |
return openai_cost_per_second( | |
model=model, | |
custom_llm_provider=custom_llm_provider, | |
duration=audio_transcription_file_duration, | |
) | |
elif custom_llm_provider == "vertex_ai": | |
cost_router = google_cost_router( | |
model=model_without_prefix, | |
custom_llm_provider=custom_llm_provider, | |
call_type=call_type, | |
) | |
if cost_router == "cost_per_character": | |
return google_cost_per_character( | |
model=model_without_prefix, | |
custom_llm_provider=custom_llm_provider, | |
prompt_characters=prompt_characters, | |
completion_characters=completion_characters, | |
usage=usage_block, | |
) | |
elif cost_router == "cost_per_token": | |
return google_cost_per_token( | |
model=model_without_prefix, | |
custom_llm_provider=custom_llm_provider, | |
usage=usage_block, | |
) | |
elif custom_llm_provider == "anthropic": | |
return anthropic_cost_per_token(model=model, usage=usage_block) | |
elif custom_llm_provider == "openai": | |
return openai_cost_per_token(model=model, usage=usage_block) | |
elif custom_llm_provider == "databricks": | |
return databricks_cost_per_token(model=model, usage=usage_block) | |
elif custom_llm_provider == "fireworks_ai": | |
return fireworks_ai_cost_per_token(model=model, usage=usage_block) | |
elif custom_llm_provider == "azure": | |
return azure_openai_cost_per_token( | |
model=model, usage=usage_block, response_time_ms=response_time_ms | |
) | |
elif custom_llm_provider == "gemini": | |
return gemini_cost_per_token(model=model, usage=usage_block) | |
elif custom_llm_provider == "deepseek": | |
return deepseek_cost_per_token(model=model, usage=usage_block) | |
else: | |
model_info = _cached_get_model_info_helper( | |
model=model, custom_llm_provider=custom_llm_provider | |
) | |
if model_info["input_cost_per_token"] > 0: | |
## COST PER TOKEN ## | |
prompt_tokens_cost_usd_dollar = ( | |
model_info["input_cost_per_token"] * prompt_tokens | |
) | |
elif ( | |
model_info.get("input_cost_per_second", None) is not None | |
and response_time_ms is not None | |
): | |
verbose_logger.debug( | |
"For model=%s - input_cost_per_second: %s; response time: %s", | |
model, | |
model_info.get("input_cost_per_second", None), | |
response_time_ms, | |
) | |
## COST PER SECOND ## | |
prompt_tokens_cost_usd_dollar = ( | |
model_info["input_cost_per_second"] * response_time_ms / 1000 # type: ignore | |
) | |
if model_info["output_cost_per_token"] > 0: | |
completion_tokens_cost_usd_dollar = ( | |
model_info["output_cost_per_token"] * completion_tokens | |
) | |
elif ( | |
model_info.get("output_cost_per_second", None) is not None | |
and response_time_ms is not None | |
): | |
verbose_logger.debug( | |
"For model=%s - output_cost_per_second: %s; response time: %s", | |
model, | |
model_info.get("output_cost_per_second", None), | |
response_time_ms, | |
) | |
## COST PER SECOND ## | |
completion_tokens_cost_usd_dollar = ( | |
model_info["output_cost_per_second"] * response_time_ms / 1000 # type: ignore | |
) | |
verbose_logger.debug( | |
"Returned custom cost for model=%s - prompt_tokens_cost_usd_dollar: %s, completion_tokens_cost_usd_dollar: %s", | |
model, | |
prompt_tokens_cost_usd_dollar, | |
completion_tokens_cost_usd_dollar, | |
) | |
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar | |
def get_replicate_completion_pricing(completion_response: dict, total_time=0.0): | |
# see https://replicate.com/pricing | |
# for all litellm currently supported LLMs, almost all requests go to a100_80gb | |
a100_80gb_price_per_second_public = DEFAULT_REPLICATE_GPU_PRICE_PER_SECOND # assume all calls sent to A100 80GB for now | |
if total_time == 0.0: # total time is in ms | |
start_time = completion_response.get("created", time.time()) | |
end_time = getattr(completion_response, "ended", time.time()) | |
total_time = end_time - start_time | |
return a100_80gb_price_per_second_public * total_time / 1000 | |
def has_hidden_params(obj: Any) -> bool: | |
return hasattr(obj, "_hidden_params") | |
def _get_provider_for_cost_calc( | |
model: Optional[str], | |
custom_llm_provider: Optional[str] = None, | |
) -> Optional[str]: | |
if custom_llm_provider is not None: | |
return custom_llm_provider | |
if model is None: | |
return None | |
try: | |
_, custom_llm_provider, _, _ = litellm.get_llm_provider(model=model) | |
except Exception as e: | |
verbose_logger.debug( | |
f"litellm.cost_calculator.py::_get_provider_for_cost_calc() - Error inferring custom_llm_provider - {str(e)}" | |
) | |
return None | |
return custom_llm_provider | |
def _select_model_name_for_cost_calc( | |
model: Optional[str], | |
completion_response: Optional[Any], | |
base_model: Optional[str] = None, | |
custom_pricing: Optional[bool] = None, | |
custom_llm_provider: Optional[str] = None, | |
router_model_id: Optional[str] = None, | |
) -> Optional[str]: | |
""" | |
1. If custom pricing is true, return received model name | |
2. If base_model is set (e.g. for azure models), return that | |
3. If completion response has model set return that | |
4. Check if model is passed in return that | |
""" | |
return_model: Optional[str] = None | |
region_name: Optional[str] = None | |
custom_llm_provider = _get_provider_for_cost_calc( | |
model=model, custom_llm_provider=custom_llm_provider | |
) | |
completion_response_model: Optional[str] = None | |
if completion_response is not None: | |
if isinstance(completion_response, BaseModel): | |
completion_response_model = getattr(completion_response, "model", None) | |
elif isinstance(completion_response, dict): | |
completion_response_model = completion_response.get("model", None) | |
hidden_params: Optional[dict] = getattr(completion_response, "_hidden_params", None) | |
if custom_pricing is True: | |
if router_model_id is not None and router_model_id in litellm.model_cost: | |
return_model = router_model_id | |
else: | |
return_model = model | |
if base_model is not None: | |
return_model = base_model | |
if completion_response_model is None and hidden_params is not None: | |
if ( | |
hidden_params.get("model", None) is not None | |
and len(hidden_params["model"]) > 0 | |
): | |
return_model = hidden_params.get("model", model) | |
if hidden_params is not None and hidden_params.get("region_name", None) is not None: | |
region_name = hidden_params.get("region_name", None) | |
if return_model is None and completion_response_model is not None: | |
return_model = completion_response_model | |
if return_model is None and model is not None: | |
return_model = model | |
if ( | |
return_model is not None | |
and custom_llm_provider is not None | |
and not _model_contains_known_llm_provider(return_model) | |
): # add provider prefix if not already present, to match model_cost | |
if region_name is not None: | |
return_model = f"{custom_llm_provider}/{region_name}/{return_model}" | |
else: | |
return_model = f"{custom_llm_provider}/{return_model}" | |
return return_model | |
def _model_contains_known_llm_provider(model: str) -> bool: | |
""" | |
Check if the model contains a known llm provider | |
""" | |
_provider_prefix = model.split("/")[0] | |
return _provider_prefix in LlmProvidersSet | |
def _get_usage_object( | |
completion_response: Any, | |
) -> Optional[Usage]: | |
usage_obj = cast( | |
Union[Usage, ResponseAPIUsage, dict, BaseModel], | |
( | |
completion_response.get("usage") | |
if isinstance(completion_response, dict) | |
else getattr(completion_response, "get", lambda x: None)("usage") | |
), | |
) | |
if usage_obj is None: | |
return None | |
if isinstance(usage_obj, Usage): | |
return usage_obj | |
elif ( | |
usage_obj is not None | |
and (isinstance(usage_obj, dict) or isinstance(usage_obj, ResponseAPIUsage)) | |
and ResponseAPILoggingUtils._is_response_api_usage(usage_obj) | |
): | |
return ResponseAPILoggingUtils._transform_response_api_usage_to_chat_usage( | |
usage_obj | |
) | |
elif isinstance(usage_obj, dict): | |
return Usage(**usage_obj) | |
elif isinstance(usage_obj, BaseModel): | |
return Usage(**usage_obj.model_dump()) | |
else: | |
verbose_logger.debug( | |
f"Unknown usage object type: {type(usage_obj)}, usage_obj: {usage_obj}" | |
) | |
return None | |
def _is_known_usage_objects(usage_obj): | |
"""Returns True if the usage obj is a known Usage type""" | |
return isinstance(usage_obj, litellm.Usage) or isinstance( | |
usage_obj, ResponseAPIUsage | |
) | |
def _infer_call_type( | |
call_type: Optional[CallTypesLiteral], completion_response: Any | |
) -> Optional[CallTypesLiteral]: | |
if call_type is not None: | |
return call_type | |
if completion_response is None: | |
return None | |
if isinstance(completion_response, ModelResponse): | |
return "completion" | |
elif isinstance(completion_response, EmbeddingResponse): | |
return "embedding" | |
elif isinstance(completion_response, TranscriptionResponse): | |
return "transcription" | |
elif isinstance(completion_response, HttpxBinaryResponseContent): | |
return "speech" | |
elif isinstance(completion_response, RerankResponse): | |
return "rerank" | |
elif isinstance(completion_response, ImageResponse): | |
return "image_generation" | |
elif isinstance(completion_response, TextCompletionResponse): | |
return "text_completion" | |
return call_type | |
def completion_cost( # noqa: PLR0915 | |
completion_response=None, | |
model: Optional[str] = None, | |
prompt="", | |
messages: List = [], | |
completion="", | |
total_time: Optional[float] = 0.0, # used for replicate, sagemaker | |
call_type: Optional[CallTypesLiteral] = None, | |
### REGION ### | |
custom_llm_provider=None, | |
region_name=None, # used for bedrock pricing | |
### IMAGE GEN ### | |
size: Optional[str] = None, | |
quality: Optional[str] = None, | |
n: Optional[int] = None, # number of images | |
### CUSTOM PRICING ### | |
custom_cost_per_token: Optional[CostPerToken] = None, | |
custom_cost_per_second: Optional[float] = None, | |
optional_params: Optional[dict] = None, | |
custom_pricing: Optional[bool] = None, | |
base_model: Optional[str] = None, | |
standard_built_in_tools_params: Optional[StandardBuiltInToolsParams] = None, | |
litellm_model_name: Optional[str] = None, | |
router_model_id: Optional[str] = None, | |
) -> float: | |
""" | |
Calculate the cost of a given completion call fot GPT-3.5-turbo, llama2, any litellm supported llm. | |
Parameters: | |
completion_response (litellm.ModelResponses): [Required] The response received from a LiteLLM completion request. | |
[OPTIONAL PARAMS] | |
model (str): Optional. The name of the language model used in the completion calls | |
prompt (str): Optional. The input prompt passed to the llm | |
completion (str): Optional. The output completion text from the llm | |
total_time (float, int): Optional. (Only used for Replicate LLMs) The total time used for the request in seconds | |
custom_cost_per_token: Optional[CostPerToken]: the cost per input + output token for the llm api call. | |
custom_cost_per_second: Optional[float]: the cost per second for the llm api call. | |
Returns: | |
float: The cost in USD dollars for the completion based on the provided parameters. | |
Exceptions: | |
Raises exception if model not in the litellm model cost map. Register model, via custom pricing or PR - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json | |
Note: | |
- If completion_response is provided, the function extracts token information and the model name from it. | |
- If completion_response is not provided, the function calculates token counts based on the model and input text. | |
- The cost is calculated based on the model, prompt tokens, and completion tokens. | |
- For certain models containing "togethercomputer" in the name, prices are based on the model size. | |
- For un-mapped Replicate models, the cost is calculated based on the total time used for the request. | |
""" | |
try: | |
call_type = _infer_call_type(call_type, completion_response) or "completion" | |
if ( | |
(call_type == "aimage_generation" or call_type == "image_generation") | |
and model is not None | |
and isinstance(model, str) | |
and len(model) == 0 | |
and custom_llm_provider == "azure" | |
): | |
model = "dall-e-2" # for dall-e-2, azure expects an empty model name | |
# Handle Inputs to completion_cost | |
prompt_tokens = 0 | |
prompt_characters: Optional[int] = None | |
completion_tokens = 0 | |
completion_characters: Optional[int] = None | |
cache_creation_input_tokens: Optional[int] = None | |
cache_read_input_tokens: Optional[int] = None | |
audio_transcription_file_duration: float = 0.0 | |
cost_per_token_usage_object: Optional[Usage] = _get_usage_object( | |
completion_response=completion_response | |
) | |
rerank_billed_units: Optional[RerankBilledUnits] = None | |
selected_model = _select_model_name_for_cost_calc( | |
model=model, | |
completion_response=completion_response, | |
custom_llm_provider=custom_llm_provider, | |
custom_pricing=custom_pricing, | |
base_model=base_model, | |
router_model_id=router_model_id, | |
) | |
potential_model_names = [selected_model] | |
if model is not None: | |
potential_model_names.append(model) | |
for idx, model in enumerate(potential_model_names): | |
try: | |
verbose_logger.info( | |
f"selected model name for cost calculation: {model}" | |
) | |
if completion_response is not None and ( | |
isinstance(completion_response, BaseModel) | |
or isinstance(completion_response, dict) | |
): # tts returns a custom class | |
if isinstance(completion_response, dict): | |
usage_obj: Optional[ | |
Union[dict, Usage] | |
] = completion_response.get("usage", {}) | |
else: | |
usage_obj = getattr(completion_response, "usage", {}) | |
if isinstance(usage_obj, BaseModel) and not _is_known_usage_objects( | |
usage_obj=usage_obj | |
): | |
setattr( | |
completion_response, | |
"usage", | |
litellm.Usage(**usage_obj.model_dump()), | |
) | |
if usage_obj is None: | |
_usage = {} | |
elif isinstance(usage_obj, BaseModel): | |
_usage = usage_obj.model_dump() | |
else: | |
_usage = usage_obj | |
if ResponseAPILoggingUtils._is_response_api_usage(_usage): | |
_usage = ResponseAPILoggingUtils._transform_response_api_usage_to_chat_usage( | |
_usage | |
).model_dump() | |
# get input/output tokens from completion_response | |
prompt_tokens = _usage.get("prompt_tokens", 0) | |
completion_tokens = _usage.get("completion_tokens", 0) | |
cache_creation_input_tokens = _usage.get( | |
"cache_creation_input_tokens", 0 | |
) | |
cache_read_input_tokens = _usage.get("cache_read_input_tokens", 0) | |
if ( | |
"prompt_tokens_details" in _usage | |
and _usage["prompt_tokens_details"] != {} | |
and _usage["prompt_tokens_details"] | |
): | |
prompt_tokens_details = _usage.get("prompt_tokens_details", {}) | |
cache_read_input_tokens = prompt_tokens_details.get( | |
"cached_tokens", 0 | |
) | |
total_time = getattr(completion_response, "_response_ms", 0) | |
hidden_params = getattr(completion_response, "_hidden_params", None) | |
if hidden_params is not None: | |
custom_llm_provider = hidden_params.get( | |
"custom_llm_provider", custom_llm_provider or None | |
) | |
region_name = hidden_params.get("region_name", region_name) | |
size = hidden_params.get("optional_params", {}).get( | |
"size", "1024-x-1024" | |
) # openai default | |
quality = hidden_params.get("optional_params", {}).get( | |
"quality", "standard" | |
) # openai default | |
n = hidden_params.get("optional_params", {}).get( | |
"n", 1 | |
) # openai default | |
else: | |
if model is None: | |
raise ValueError( | |
f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}" | |
) | |
if len(messages) > 0: | |
prompt_tokens = token_counter(model=model, messages=messages) | |
elif len(prompt) > 0: | |
prompt_tokens = token_counter(model=model, text=prompt) | |
completion_tokens = token_counter(model=model, text=completion) | |
if model is None: | |
raise ValueError( | |
f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}" | |
) | |
if custom_llm_provider is None: | |
try: | |
model, custom_llm_provider, _, _ = litellm.get_llm_provider( | |
model=model | |
) # strip the llm provider from the model name -> for image gen cost calculation | |
except Exception as e: | |
verbose_logger.debug( | |
"litellm.cost_calculator.py::completion_cost() - Error inferring custom_llm_provider - {}".format( | |
str(e) | |
) | |
) | |
if ( | |
call_type == CallTypes.image_generation.value | |
or call_type == CallTypes.aimage_generation.value | |
or call_type | |
== PassthroughCallTypes.passthrough_image_generation.value | |
): | |
### IMAGE GENERATION COST CALCULATION ### | |
if custom_llm_provider == "vertex_ai": | |
if isinstance(completion_response, ImageResponse): | |
return vertex_ai_image_cost_calculator( | |
model=model, | |
image_response=completion_response, | |
) | |
elif custom_llm_provider == "bedrock": | |
if isinstance(completion_response, ImageResponse): | |
return bedrock_image_cost_calculator( | |
model=model, | |
size=size, | |
image_response=completion_response, | |
optional_params=optional_params, | |
) | |
raise TypeError( | |
"completion_response must be of type ImageResponse for bedrock image cost calculation" | |
) | |
else: | |
return default_image_cost_calculator( | |
model=model, | |
quality=quality, | |
custom_llm_provider=custom_llm_provider, | |
n=n, | |
size=size, | |
optional_params=optional_params, | |
) | |
elif ( | |
call_type == CallTypes.speech.value | |
or call_type == CallTypes.aspeech.value | |
): | |
prompt_characters = litellm.utils._count_characters(text=prompt) | |
elif ( | |
call_type == CallTypes.atranscription.value | |
or call_type == CallTypes.transcription.value | |
): | |
audio_transcription_file_duration = getattr( | |
completion_response, "duration", 0.0 | |
) | |
elif ( | |
call_type == CallTypes.rerank.value | |
or call_type == CallTypes.arerank.value | |
): | |
if completion_response is not None and isinstance( | |
completion_response, RerankResponse | |
): | |
meta_obj = completion_response.meta | |
if meta_obj is not None: | |
billed_units = meta_obj.get("billed_units", {}) or {} | |
else: | |
billed_units = {} | |
rerank_billed_units = RerankBilledUnits( | |
search_units=billed_units.get("search_units"), | |
total_tokens=billed_units.get("total_tokens"), | |
) | |
search_units = ( | |
billed_units.get("search_units") or 1 | |
) # cohere charges per request by default. | |
completion_tokens = search_units | |
elif call_type == CallTypes.arealtime.value and isinstance( | |
completion_response, LiteLLMRealtimeStreamLoggingObject | |
): | |
if ( | |
cost_per_token_usage_object is None | |
or custom_llm_provider is None | |
): | |
raise ValueError( | |
"usage object and custom_llm_provider must be provided for realtime stream cost calculation. Got cost_per_token_usage_object={}, custom_llm_provider={}".format( | |
cost_per_token_usage_object, | |
custom_llm_provider, | |
) | |
) | |
return handle_realtime_stream_cost_calculation( | |
results=completion_response.results, | |
combined_usage_object=cost_per_token_usage_object, | |
custom_llm_provider=custom_llm_provider, | |
litellm_model_name=model, | |
) | |
# Calculate cost based on prompt_tokens, completion_tokens | |
if ( | |
"togethercomputer" in model | |
or "together_ai" in model | |
or custom_llm_provider == "together_ai" | |
): | |
# together ai prices based on size of llm | |
# get_model_params_and_category takes a model name and returns the category of LLM size it is in model_prices_and_context_window.json | |
model = get_model_params_and_category( | |
model, call_type=CallTypes(call_type) | |
) | |
# replicate llms are calculate based on time for request running | |
# see https://replicate.com/pricing | |
elif ( | |
model in litellm.replicate_models or "replicate" in model | |
) and model not in litellm.model_cost: | |
# for unmapped replicate model, default to replicate's time tracking logic | |
return get_replicate_completion_pricing(completion_response, total_time) # type: ignore | |
if model is None: | |
raise ValueError( | |
f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}" | |
) | |
if ( | |
custom_llm_provider is not None | |
and custom_llm_provider == "vertex_ai" | |
): | |
# Calculate the prompt characters + response characters | |
if len(messages) > 0: | |
prompt_string = litellm.utils.get_formatted_prompt( | |
data={"messages": messages}, call_type="completion" | |
) | |
prompt_characters = litellm.utils._count_characters( | |
text=prompt_string | |
) | |
if completion_response is not None and isinstance( | |
completion_response, ModelResponse | |
): | |
completion_string = litellm.utils.get_response_string( | |
response_obj=completion_response | |
) | |
completion_characters = litellm.utils._count_characters( | |
text=completion_string | |
) | |
( | |
prompt_tokens_cost_usd_dollar, | |
completion_tokens_cost_usd_dollar, | |
) = cost_per_token( | |
model=model, | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
custom_llm_provider=custom_llm_provider, | |
response_time_ms=total_time, | |
region_name=region_name, | |
custom_cost_per_second=custom_cost_per_second, | |
custom_cost_per_token=custom_cost_per_token, | |
prompt_characters=prompt_characters, | |
completion_characters=completion_characters, | |
cache_creation_input_tokens=cache_creation_input_tokens, | |
cache_read_input_tokens=cache_read_input_tokens, | |
usage_object=cost_per_token_usage_object, | |
call_type=cast(CallTypesLiteral, call_type), | |
audio_transcription_file_duration=audio_transcription_file_duration, | |
rerank_billed_units=rerank_billed_units, | |
) | |
_final_cost = ( | |
prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar | |
) | |
_final_cost += ( | |
StandardBuiltInToolCostTracking.get_cost_for_built_in_tools( | |
model=model, | |
response_object=completion_response, | |
standard_built_in_tools_params=standard_built_in_tools_params, | |
custom_llm_provider=custom_llm_provider, | |
) | |
) | |
return _final_cost | |
except Exception as e: | |
verbose_logger.debug( | |
"litellm.cost_calculator.py::completion_cost() - Error calculating cost for model={} - {}".format( | |
model, str(e) | |
) | |
) | |
if idx == len(potential_model_names) - 1: | |
raise e | |
raise Exception( | |
"Unable to calculat cost for received potential model names - {}".format( | |
potential_model_names | |
) | |
) | |
except Exception as e: | |
raise e | |
def get_response_cost_from_hidden_params( | |
hidden_params: Union[dict, BaseModel], | |
) -> Optional[float]: | |
if isinstance(hidden_params, BaseModel): | |
_hidden_params_dict = hidden_params.model_dump() | |
else: | |
_hidden_params_dict = hidden_params | |
additional_headers = _hidden_params_dict.get("additional_headers", {}) | |
if ( | |
additional_headers | |
and "llm_provider-x-litellm-response-cost" in additional_headers | |
): | |
response_cost = additional_headers["llm_provider-x-litellm-response-cost"] | |
if response_cost is None: | |
return None | |
return float(additional_headers["llm_provider-x-litellm-response-cost"]) | |
return None | |
def response_cost_calculator( | |
response_object: Union[ | |
ModelResponse, | |
EmbeddingResponse, | |
ImageResponse, | |
TranscriptionResponse, | |
TextCompletionResponse, | |
HttpxBinaryResponseContent, | |
RerankResponse, | |
ResponsesAPIResponse, | |
LiteLLMRealtimeStreamLoggingObject, | |
OpenAIModerationResponse, | |
], | |
model: str, | |
custom_llm_provider: Optional[str], | |
call_type: Literal[ | |
"embedding", | |
"aembedding", | |
"completion", | |
"acompletion", | |
"atext_completion", | |
"text_completion", | |
"image_generation", | |
"aimage_generation", | |
"moderation", | |
"amoderation", | |
"atranscription", | |
"transcription", | |
"aspeech", | |
"speech", | |
"rerank", | |
"arerank", | |
], | |
optional_params: dict, | |
cache_hit: Optional[bool] = None, | |
base_model: Optional[str] = None, | |
custom_pricing: Optional[bool] = None, | |
prompt: str = "", | |
standard_built_in_tools_params: Optional[StandardBuiltInToolsParams] = None, | |
litellm_model_name: Optional[str] = None, | |
router_model_id: Optional[str] = None, | |
) -> float: | |
""" | |
Returns | |
- float or None: cost of response | |
""" | |
try: | |
response_cost: float = 0.0 | |
if cache_hit is not None and cache_hit is True: | |
response_cost = 0.0 | |
else: | |
if isinstance(response_object, BaseModel): | |
response_object._hidden_params["optional_params"] = optional_params | |
if hasattr(response_object, "_hidden_params"): | |
provider_response_cost = get_response_cost_from_hidden_params( | |
response_object._hidden_params | |
) | |
if provider_response_cost is not None: | |
return provider_response_cost | |
response_cost = completion_cost( | |
completion_response=response_object, | |
model=model, | |
call_type=call_type, | |
custom_llm_provider=custom_llm_provider, | |
optional_params=optional_params, | |
custom_pricing=custom_pricing, | |
base_model=base_model, | |
prompt=prompt, | |
standard_built_in_tools_params=standard_built_in_tools_params, | |
litellm_model_name=litellm_model_name, | |
router_model_id=router_model_id, | |
) | |
return response_cost | |
except Exception as e: | |
raise e | |
def rerank_cost( | |
model: str, | |
custom_llm_provider: Optional[str], | |
billed_units: Optional[RerankBilledUnits] = None, | |
) -> Tuple[float, float]: | |
""" | |
Returns | |
- float or None: cost of response OR none if error. | |
""" | |
_, custom_llm_provider, _, _ = litellm.get_llm_provider( | |
model=model, custom_llm_provider=custom_llm_provider | |
) | |
try: | |
config = ProviderConfigManager.get_provider_rerank_config( | |
model=model, | |
api_base=None, | |
present_version_params=[], | |
provider=LlmProviders(custom_llm_provider), | |
) | |
try: | |
model_info: Optional[ModelInfo] = litellm.get_model_info( | |
model=model, custom_llm_provider=custom_llm_provider | |
) | |
except Exception: | |
model_info = None | |
return config.calculate_rerank_cost( | |
model=model, | |
custom_llm_provider=custom_llm_provider, | |
billed_units=billed_units, | |
model_info=model_info, | |
) | |
except Exception as e: | |
raise e | |
def transcription_cost( | |
model: str, custom_llm_provider: Optional[str], duration: float | |
) -> Tuple[float, float]: | |
return openai_cost_per_second( | |
model=model, custom_llm_provider=custom_llm_provider, duration=duration | |
) | |
def default_image_cost_calculator( | |
model: str, | |
custom_llm_provider: Optional[str] = None, | |
quality: Optional[str] = None, | |
n: Optional[int] = 1, # Default to 1 image | |
size: Optional[str] = "1024-x-1024", # OpenAI default | |
optional_params: Optional[dict] = None, | |
) -> float: | |
""" | |
Default image cost calculator for image generation | |
Args: | |
model (str): Model name | |
image_response (ImageResponse): Response from image generation | |
quality (Optional[str]): Image quality setting | |
n (Optional[int]): Number of images generated | |
size (Optional[str]): Image size (e.g. "1024x1024" or "1024-x-1024") | |
Returns: | |
float: Cost in USD for the image generation | |
Raises: | |
Exception: If model pricing not found in cost map | |
""" | |
# Standardize size format to use "-x-" | |
size_str: str = size or "1024-x-1024" | |
size_str = ( | |
size_str.replace("x", "-x-") | |
if "x" in size_str and "-x-" not in size_str | |
else size_str | |
) | |
# Parse dimensions | |
height, width = map(int, size_str.split("-x-")) | |
# Build model names for cost lookup | |
base_model_name = f"{size_str}/{model}" | |
if custom_llm_provider and model.startswith(custom_llm_provider): | |
base_model_name = ( | |
f"{custom_llm_provider}/{size_str}/{model.replace(custom_llm_provider, '')}" | |
) | |
model_name_with_quality = ( | |
f"{quality}/{base_model_name}" if quality else base_model_name | |
) | |
# gpt-image-1 models use low, medium, high quality. If user did not specify quality, use medium fot gpt-image-1 model family | |
model_name_with_v2_quality = ( | |
f"{ImageGenerationRequestQuality.MEDIUM.value}/{base_model_name}" | |
) | |
verbose_logger.debug( | |
f"Looking up cost for models: {model_name_with_quality}, {base_model_name}" | |
) | |
model_without_provider = f"{size_str}/{model.split('/')[-1]}" | |
model_with_quality_without_provider = ( | |
f"{quality}/{model_without_provider}" if quality else model_without_provider | |
) | |
# Try model with quality first, fall back to base model name | |
cost_info: Optional[dict] = None | |
models_to_check = [ | |
model_name_with_quality, | |
base_model_name, | |
model_name_with_v2_quality, | |
model_with_quality_without_provider, | |
model_without_provider, | |
model, | |
] | |
for model in models_to_check: | |
if model in litellm.model_cost: | |
cost_info = litellm.model_cost[model] | |
break | |
if cost_info is None: | |
raise Exception( | |
f"Model not found in cost map. Tried checking {models_to_check}" | |
) | |
return cost_info["input_cost_per_pixel"] * height * width * n | |
def batch_cost_calculator( | |
usage: Usage, | |
model: str, | |
custom_llm_provider: Optional[str] = None, | |
) -> Tuple[float, float]: | |
""" | |
Calculate the cost of a batch job | |
""" | |
_, custom_llm_provider, _, _ = litellm.get_llm_provider( | |
model=model, custom_llm_provider=custom_llm_provider | |
) | |
verbose_logger.info( | |
"Calculating batch cost per token. model=%s, custom_llm_provider=%s", | |
model, | |
custom_llm_provider, | |
) | |
try: | |
model_info: Optional[ModelInfo] = litellm.get_model_info( | |
model=model, custom_llm_provider=custom_llm_provider | |
) | |
except Exception: | |
model_info = None | |
if not model_info: | |
return 0.0, 0.0 | |
input_cost_per_token_batches = model_info.get("input_cost_per_token_batches") | |
input_cost_per_token = model_info.get("input_cost_per_token") | |
output_cost_per_token_batches = model_info.get("output_cost_per_token_batches") | |
output_cost_per_token = model_info.get("output_cost_per_token") | |
total_prompt_cost = 0.0 | |
total_completion_cost = 0.0 | |
if input_cost_per_token_batches: | |
total_prompt_cost = usage.prompt_tokens * input_cost_per_token_batches | |
elif input_cost_per_token: | |
total_prompt_cost = ( | |
usage.prompt_tokens * (input_cost_per_token) / 2 | |
) # batch cost is usually half of the regular token cost | |
if output_cost_per_token_batches: | |
total_completion_cost = usage.completion_tokens * output_cost_per_token_batches | |
elif output_cost_per_token: | |
total_completion_cost = ( | |
usage.completion_tokens * (output_cost_per_token) / 2 | |
) # batch cost is usually half of the regular token cost | |
return total_prompt_cost, total_completion_cost | |
class RealtimeAPITokenUsageProcessor: | |
def collect_usage_from_realtime_stream_results( | |
results: OpenAIRealtimeStreamList, | |
) -> List[Usage]: | |
""" | |
Collect usage from realtime stream results | |
""" | |
response_done_events: List[OpenAIRealtimeStreamResponseBaseObject] = cast( | |
List[OpenAIRealtimeStreamResponseBaseObject], | |
[result for result in results if result["type"] == "response.done"], | |
) | |
usage_objects: List[Usage] = [] | |
for result in response_done_events: | |
usage_object = ( | |
ResponseAPILoggingUtils._transform_response_api_usage_to_chat_usage( | |
result["response"].get("usage", {}) | |
) | |
) | |
usage_objects.append(usage_object) | |
return usage_objects | |
def combine_usage_objects(usage_objects: List[Usage]) -> Usage: | |
""" | |
Combine multiple Usage objects into a single Usage object, checking model keys for nested values. | |
""" | |
from litellm.types.utils import ( | |
CompletionTokensDetails, | |
PromptTokensDetailsWrapper, | |
Usage, | |
) | |
combined = Usage() | |
# Sum basic token counts | |
for usage in usage_objects: | |
# Handle direct attributes by checking what exists in the model | |
for attr in dir(usage): | |
if not attr.startswith("_") and not callable(getattr(usage, attr)): | |
current_val = getattr(combined, attr, 0) | |
new_val = getattr(usage, attr, 0) | |
if ( | |
new_val is not None | |
and isinstance(new_val, (int, float)) | |
and isinstance(current_val, (int, float)) | |
): | |
setattr(combined, attr, current_val + new_val) | |
# Handle nested prompt_tokens_details | |
if hasattr(usage, "prompt_tokens_details") and usage.prompt_tokens_details: | |
if ( | |
not hasattr(combined, "prompt_tokens_details") | |
or not combined.prompt_tokens_details | |
): | |
combined.prompt_tokens_details = PromptTokensDetailsWrapper() | |
# Check what keys exist in the model's prompt_tokens_details | |
for attr in dir(usage.prompt_tokens_details): | |
if not attr.startswith("_") and not callable( | |
getattr(usage.prompt_tokens_details, attr) | |
): | |
current_val = getattr(combined.prompt_tokens_details, attr, 0) | |
new_val = getattr(usage.prompt_tokens_details, attr, 0) | |
if new_val is not None: | |
setattr( | |
combined.prompt_tokens_details, | |
attr, | |
current_val + new_val, | |
) | |
# Handle nested completion_tokens_details | |
if ( | |
hasattr(usage, "completion_tokens_details") | |
and usage.completion_tokens_details | |
): | |
if ( | |
not hasattr(combined, "completion_tokens_details") | |
or not combined.completion_tokens_details | |
): | |
combined.completion_tokens_details = CompletionTokensDetails() | |
# Check what keys exist in the model's completion_tokens_details | |
for attr in dir(usage.completion_tokens_details): | |
if not attr.startswith("_") and not callable( | |
getattr(usage.completion_tokens_details, attr) | |
): | |
current_val = getattr( | |
combined.completion_tokens_details, attr, 0 | |
) | |
new_val = getattr(usage.completion_tokens_details, attr, 0) | |
if new_val is not None: | |
setattr( | |
combined.completion_tokens_details, | |
attr, | |
current_val + new_val, | |
) | |
return combined | |
def collect_and_combine_usage_from_realtime_stream_results( | |
results: OpenAIRealtimeStreamList, | |
) -> Usage: | |
""" | |
Collect and combine usage from realtime stream results | |
""" | |
collected_usage_objects = ( | |
RealtimeAPITokenUsageProcessor.collect_usage_from_realtime_stream_results( | |
results | |
) | |
) | |
combined_usage_object = RealtimeAPITokenUsageProcessor.combine_usage_objects( | |
collected_usage_objects | |
) | |
return combined_usage_object | |
def create_logging_realtime_object( | |
usage: Usage, results: OpenAIRealtimeStreamList | |
) -> LiteLLMRealtimeStreamLoggingObject: | |
return LiteLLMRealtimeStreamLoggingObject( | |
usage=usage, | |
results=results, | |
) | |
def handle_realtime_stream_cost_calculation( | |
results: OpenAIRealtimeStreamList, | |
combined_usage_object: Usage, | |
custom_llm_provider: str, | |
litellm_model_name: str, | |
) -> float: | |
""" | |
Handles the cost calculation for realtime stream responses. | |
Pick the 'response.done' events. Calculate total cost across all 'response.done' events. | |
Args: | |
results: A list of OpenAIRealtimeStreamBaseObject objects | |
""" | |
received_model = None | |
potential_model_names = [] | |
for result in results: | |
if result["type"] == "session.created": | |
received_model = cast(OpenAIRealtimeStreamSessionEvents, result)["session"][ | |
"model" | |
] | |
potential_model_names.append(received_model) | |
potential_model_names.append(litellm_model_name) | |
input_cost_per_token = 0.0 | |
output_cost_per_token = 0.0 | |
for model_name in potential_model_names: | |
try: | |
_input_cost_per_token, _output_cost_per_token = generic_cost_per_token( | |
model=model_name, | |
usage=combined_usage_object, | |
custom_llm_provider=custom_llm_provider, | |
) | |
except Exception: | |
continue | |
input_cost_per_token += _input_cost_per_token | |
output_cost_per_token += _output_cost_per_token | |
break # exit if we find a valid model | |
total_cost = input_cost_per_token + output_cost_per_token | |
return total_cost | |