Shyamnath's picture
Push core package and essential files
469eae6
raw
history blame
10.5 kB
from datetime import datetime
from typing import Any, Dict, List, Optional, Set, Union
from fastapi import HTTPException, status
from litellm._logging import verbose_proxy_logger
from litellm.proxy._types import CommonProxyErrors
from litellm.proxy.utils import PrismaClient
from litellm.types.proxy.management_endpoints.common_daily_activity import (
BreakdownMetrics,
DailySpendData,
DailySpendMetadata,
KeyMetadata,
KeyMetricWithMetadata,
MetricWithMetadata,
SpendAnalyticsPaginatedResponse,
SpendMetrics,
)
def update_metrics(existing_metrics: SpendMetrics, record: Any) -> SpendMetrics:
"""Update metrics with new record data."""
existing_metrics.spend += record.spend
existing_metrics.prompt_tokens += record.prompt_tokens
existing_metrics.completion_tokens += record.completion_tokens
existing_metrics.total_tokens += record.prompt_tokens + record.completion_tokens
existing_metrics.cache_read_input_tokens += record.cache_read_input_tokens
existing_metrics.cache_creation_input_tokens += record.cache_creation_input_tokens
existing_metrics.api_requests += record.api_requests
existing_metrics.successful_requests += record.successful_requests
existing_metrics.failed_requests += record.failed_requests
return existing_metrics
def update_breakdown_metrics(
breakdown: BreakdownMetrics,
record: Any,
model_metadata: Dict[str, Dict[str, Any]],
provider_metadata: Dict[str, Dict[str, Any]],
api_key_metadata: Dict[str, Dict[str, Any]],
entity_id_field: Optional[str] = None,
entity_metadata_field: Optional[Dict[str, dict]] = None,
) -> BreakdownMetrics:
"""Updates breakdown metrics for a single record using the existing update_metrics function"""
# Update model breakdown
if record.model not in breakdown.models:
breakdown.models[record.model] = MetricWithMetadata(
metrics=SpendMetrics(),
metadata=model_metadata.get(
record.model, {}
), # Add any model-specific metadata here
)
breakdown.models[record.model].metrics = update_metrics(
breakdown.models[record.model].metrics, record
)
# Update provider breakdown
provider = record.custom_llm_provider or "unknown"
if provider not in breakdown.providers:
breakdown.providers[provider] = MetricWithMetadata(
metrics=SpendMetrics(),
metadata=provider_metadata.get(
provider, {}
), # Add any provider-specific metadata here
)
breakdown.providers[provider].metrics = update_metrics(
breakdown.providers[provider].metrics, record
)
# Update api key breakdown
if record.api_key not in breakdown.api_keys:
breakdown.api_keys[record.api_key] = KeyMetricWithMetadata(
metrics=SpendMetrics(),
metadata=KeyMetadata(
key_alias=api_key_metadata.get(record.api_key, {}).get(
"key_alias", None
),
team_id=api_key_metadata.get(record.api_key, {}).get("team_id", None),
), # Add any api_key-specific metadata here
)
breakdown.api_keys[record.api_key].metrics = update_metrics(
breakdown.api_keys[record.api_key].metrics, record
)
# Update entity-specific metrics if entity_id_field is provided
if entity_id_field:
entity_value = getattr(record, entity_id_field, None)
if entity_value:
if entity_value not in breakdown.entities:
breakdown.entities[entity_value] = MetricWithMetadata(
metrics=SpendMetrics(),
metadata=entity_metadata_field.get(entity_value, {})
if entity_metadata_field
else {},
)
breakdown.entities[entity_value].metrics = update_metrics(
breakdown.entities[entity_value].metrics, record
)
return breakdown
async def get_api_key_metadata(
prisma_client: PrismaClient,
api_keys: Set[str],
) -> Dict[str, Dict[str, Any]]:
"""Update api key metadata for a single record."""
key_records = await prisma_client.db.litellm_verificationtoken.find_many(
where={"token": {"in": list(api_keys)}}
)
return {
k.token: {"key_alias": k.key_alias, "team_id": k.team_id} for k in key_records
}
async def get_daily_activity(
prisma_client: Optional[PrismaClient],
table_name: str,
entity_id_field: str,
entity_id: Optional[Union[str, List[str]]],
entity_metadata_field: Optional[Dict[str, dict]],
start_date: Optional[str],
end_date: Optional[str],
model: Optional[str],
api_key: Optional[str],
page: int,
page_size: int,
exclude_entity_ids: Optional[List[str]] = None,
) -> SpendAnalyticsPaginatedResponse:
"""Common function to get daily activity for any entity type."""
if prisma_client is None:
raise HTTPException(
status_code=500,
detail={"error": CommonProxyErrors.db_not_connected_error.value},
)
if start_date is None or end_date is None:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail={"error": "Please provide start_date and end_date"},
)
try:
# Build filter conditions
where_conditions: Dict[str, Any] = {
"date": {
"gte": start_date,
"lte": end_date,
}
}
if model:
where_conditions["model"] = model
if api_key:
where_conditions["api_key"] = api_key
if entity_id is not None:
if isinstance(entity_id, list):
where_conditions[entity_id_field] = {"in": entity_id}
else:
where_conditions[entity_id_field] = entity_id
if exclude_entity_ids:
where_conditions.setdefault(entity_id_field, {})["not"] = {
"in": exclude_entity_ids
}
# Get total count for pagination
total_count = await getattr(prisma_client.db, table_name).count(
where=where_conditions
)
# Fetch paginated results
daily_spend_data = await getattr(prisma_client.db, table_name).find_many(
where=where_conditions,
order=[
{"date": "desc"},
],
skip=(page - 1) * page_size,
take=page_size,
)
# Get all unique API keys from the spend data
api_keys = set()
for record in daily_spend_data:
if record.api_key:
api_keys.add(record.api_key)
# Fetch key aliases in bulk
api_key_metadata: Dict[str, Dict[str, Any]] = {}
model_metadata: Dict[str, Dict[str, Any]] = {}
provider_metadata: Dict[str, Dict[str, Any]] = {}
if api_keys:
api_key_metadata = await get_api_key_metadata(prisma_client, api_keys)
# Process results
results = []
total_metrics = SpendMetrics()
grouped_data: Dict[str, Dict[str, Any]] = {}
for record in daily_spend_data:
date_str = record.date
if date_str not in grouped_data:
grouped_data[date_str] = {
"metrics": SpendMetrics(),
"breakdown": BreakdownMetrics(),
}
# Update metrics
grouped_data[date_str]["metrics"] = update_metrics(
grouped_data[date_str]["metrics"], record
)
# Update breakdowns
grouped_data[date_str]["breakdown"] = update_breakdown_metrics(
grouped_data[date_str]["breakdown"],
record,
model_metadata,
provider_metadata,
api_key_metadata,
entity_id_field=entity_id_field,
entity_metadata_field=entity_metadata_field,
)
# Update total metrics
total_metrics.spend += record.spend
total_metrics.prompt_tokens += record.prompt_tokens
total_metrics.completion_tokens += record.completion_tokens
total_metrics.total_tokens += (
record.prompt_tokens + record.completion_tokens
)
total_metrics.cache_read_input_tokens += record.cache_read_input_tokens
total_metrics.cache_creation_input_tokens += (
record.cache_creation_input_tokens
)
total_metrics.api_requests += record.api_requests
total_metrics.successful_requests += record.successful_requests
total_metrics.failed_requests += record.failed_requests
# Convert grouped data to response format
for date_str, data in grouped_data.items():
results.append(
DailySpendData(
date=datetime.strptime(date_str, "%Y-%m-%d").date(),
metrics=data["metrics"],
breakdown=data["breakdown"],
)
)
# Sort results by date
results.sort(key=lambda x: x.date, reverse=True)
return SpendAnalyticsPaginatedResponse(
results=results,
metadata=DailySpendMetadata(
total_spend=total_metrics.spend,
total_prompt_tokens=total_metrics.prompt_tokens,
total_completion_tokens=total_metrics.completion_tokens,
total_tokens=total_metrics.total_tokens,
total_api_requests=total_metrics.api_requests,
total_successful_requests=total_metrics.successful_requests,
total_failed_requests=total_metrics.failed_requests,
total_cache_read_input_tokens=total_metrics.cache_read_input_tokens,
total_cache_creation_input_tokens=total_metrics.cache_creation_input_tokens,
page=page,
total_pages=-(-total_count // page_size), # Ceiling division
has_more=(page * page_size) < total_count,
),
)
except Exception as e:
verbose_proxy_logger.exception(f"Error fetching daily activity: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"error": f"Failed to fetch analytics: {str(e)}"},
)