SearchGPT / app.py
Shreyas094's picture
Update app.py
28ed44f verified
raw
history blame
2.96 kB
import os
import json
import gradio as gr
from tempfile import NamedTemporaryFile
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceHub
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
def load_and_split_document(file):
"""Loads and splits the document into pages."""
loader = PyPDFLoader(file.name)
data = loader.load_and_split()
return data
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def create_database(data, embeddings):
db = FAISS.from_documents(data, embeddings)
db.save_local("faiss_database")
prompt = """
Answer the question based only on the following context:
{context}
Question: {question}
"""
def get_model():
return HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
model_kwargs={"temperature": 0.5, "max_length": 512},
huggingfacehub_api_token=huggingface_token
)
def response(database, model, question):
prompt_val = ChatPromptTemplate.from_template(prompt)
retriever = database.as_retriever()
parser = StrOutputParser()
chain = (
{'context': retriever, 'question': RunnablePassthrough()}
| prompt_val
| model
| parser
)
ans = chain.invoke(question)
return ans
def update_vectors(file):
if file is None:
return "Please upload a PDF file."
data = load_and_split_document(file)
embed = get_embeddings()
create_database(data, embed)
return "Vector store updated successfully."
def ask_question(question):
if not question:
return "Please enter a question."
embed = get_embeddings()
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
model = get_model()
return response(database, model, question)
with gr.Blocks() as demo:
gr.Markdown("# Chat with your PDF documents")
with gr.Row():
file_input = gr.File(label="Upload your PDF document", file_types=[".pdf"])
update_button = gr.Button("Update Vector Store")
update_output = gr.Textbox(label="Update Status")
update_button.click(update_vectors, inputs=[file_input], outputs=update_output)
with gr.Row():
question_input = gr.Textbox(label="Ask a question about your documents")
submit_button = gr.Button("Submit")
answer_output = gr.Textbox(label="Answer")
submit_button.click(ask_question, inputs=[question_input], outputs=answer_output)
if __name__ == "__main__":
demo.launch()