Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from plot_app import Plot | |
plotter = Plot() | |
from recipes import ( | |
recipes_1_cotton_dark, | |
recipes_2_cotton_medium, | |
recipes_3_cotton_light, | |
recipes_4_polyester_dark, | |
recipes_5_pc_dark, | |
cotton_cotton_lycra | |
) | |
recipes_dict = { | |
("cotton", "dark"): recipes_1_cotton_dark, | |
("cotton", "medium"): recipes_2_cotton_medium, | |
("cotton", "light"): recipes_3_cotton_light, | |
("polyester", "dark"): recipes_4_polyester_dark, | |
("polycotton", "dark"): recipes_5_pc_dark, | |
("lycra","dark"): cotton_cotton_lycra | |
} | |
latent_heat = 494 | |
def calculate_outputs(mlr, recipes, capacity): | |
"""Perform calculations for each machine.""" | |
steam_consumption = [] | |
moment_time = 0 | |
time = [] | |
initial_temp = [] | |
final_temp = [] | |
temp_grad = [] | |
for i in recipes: | |
time.append(moment_time) | |
delta_t = recipes[i]["Duration"] | |
moment_time += delta_t | |
temp_diff = recipes[i]["final_temp"] - recipes[i]["init_temp"] | |
final_temp.append(recipes[i]["final_temp"]) | |
initial_temp.append(recipes[i]["init_temp"]) | |
temp_grad.append(recipes[i]["temp.grad"]) | |
temp = recipes[i]["temp.grad"] | |
temp_diff = abs(temp_diff) | |
steam_use = (capacity * mlr * temp_diff*1) + (capacity * temp_diff*1) # cp = 1 | |
if temp != 0 : | |
steam_ = steam_use*60/temp | |
else: | |
steam_ = steam_use*60 | |
steam_kg_hr = steam_/latent_heat | |
steam_consumption.append(round(steam_kg_hr,2)) | |
return { | |
"Steam Consumption": steam_consumption, | |
"Time": time, | |
"init_Temp": initial_temp, | |
"final_Temp": final_temp, | |
"temp_grad": temp_grad | |
} | |
def calculate_peak_avg_load(machine_results): | |
"""Calculate peak and average steam load for all machines.""" | |
combined_steam_load = {} | |
start_time_offset = 0 | |
for machine, results in machine_results.items(): | |
for t, load in zip(results["Time"], results["Steam Consumption"]): | |
adjusted_time = t + start_time_offset | |
if adjusted_time in combined_steam_load: | |
combined_steam_load[adjusted_time] += load | |
else: | |
combined_steam_load[adjusted_time] = load | |
start_time_offset += 10 # Each machine starts 10 units after the previous one | |
peak_load = max(combined_steam_load.values()) | |
avg_load = sum(combined_steam_load.values()) / len(combined_steam_load) | |
return peak_load, avg_load | |
def convert_df_to_csv(df): | |
return df.to_csv(index=False).encode('utf-8') | |
st.title("Dyeing Machine Load & Steam Calculator") | |
machine_type = st.selectbox("Select Type of Machine", ['SoftFlow']) | |
num_machines = st.number_input("Number of Dyeing Machines", min_value=1, value=5) | |
mlr = st.number_input("Enter the MLR for the process", min_value=2, value=6) | |
machine_capacities = {} | |
st.write("### Enter Machine Capacities") | |
for i in range(1, num_machines + 1): | |
capacity = st.number_input(f"Capacity of Machine {i} (kg)", min_value=1, value=100) | |
machine_capacities[f"{machine_type} {i}"] = capacity | |
toggle_fetch = st.checkbox("Take pre-built Recipe") | |
if toggle_fetch: | |
fabric = st.radio("Choose Fabric Type", ["Cotton", "Polyester", "PolyCotton","Lycra"], index=0) | |
shade = st.radio("Choose your Shade", ["Dark", "Medium", "Light", "White"]) | |
fabric_type = fabric.strip().lower() | |
shade = shade.strip().lower() | |
recipes = recipes_dict.get((fabric_type, shade), {}) | |
else: | |
recipes = {} | |
st.write("### Results") | |
if "current_machine_index" not in st.session_state: | |
st.session_state["current_machine_index"] = 0 | |
machine_names = list(machine_capacities.keys()) | |
machine_results = {} | |
for machine in machine_names: | |
machine_results[machine] = calculate_outputs(mlr, recipes, machine_capacities[machine]) | |
peak_load, avg_load = calculate_peak_avg_load(machine_results) | |
if st.button("Calculate Summary"): | |
st.markdown( | |
f""" | |
<div style='padding:10px; border-radius:10px; background-color:#05f5f5;'> | |
<h3 style='color:black;'>Summary</h3> | |
<p style='color:black;'><strong>Peak Steam Load:</strong> {peak_load} kg/hr</p> | |
<p style='color:black;'><strong>Average Steam Load:</strong> {avg_load} kg/hr</p> | |
</div> | |
""", | |
unsafe_allow_html=True, | |
) | |
col1, col2 = st.columns(2) | |
with col1: | |
if st.button("Previous Machine"): | |
st.session_state["current_machine_index"] = (st.session_state["current_machine_index"] - 1) % len(machine_names) | |
with col2: | |
if st.button("Next Machine"): | |
st.session_state["current_machine_index"] = (st.session_state["current_machine_index"] + 1) % len(machine_names) | |
current_machine = machine_names[st.session_state["current_machine_index"]] | |
st.write(f"### Calculations for {current_machine}") | |
df_results = pd.DataFrame(machine_results[current_machine]) | |
st.table(df_results) | |
csv = convert_df_to_csv(df_results) | |
st.download_button("Download Table as CSV", data=csv, file_name=f"{current_machine}_results.csv", mime='text/csv') | |
st.header("Steam Load Variation Over Time") | |
if st.button("Plot Steam Load Variation"): | |
fig1 = plotter.plot_steam_load(machine_results[current_machine]['Time'], machine_results[current_machine]['Steam Consumption']) | |
st.pyplot(fig1) | |
st.header("Temperature Variation Over Time") | |
if st.button("Plot Temperature Variation"): | |
fig2 = plotter.plot_temperature_curve(machine_results[current_machine]['Time'], machine_results[current_machine]['init_Temp'], machine_results[current_machine]['final_Temp'], machine_results[current_machine]['temp_grad']) | |
st.pyplot(fig2) | |