import streamlit as st import pandas as pd import matplotlib.pyplot as plt from plot_app import Plot plotter = Plot() from recipes import ( recipes_1_cotton_dark, recipes_2_cotton_medium, recipes_3_cotton_light, recipes_4_polyester_dark, recipes_5_pc_dark, cotton_cotton_lycra ) recipes_dict = { ("cotton", "dark"): recipes_1_cotton_dark, ("cotton", "medium"): recipes_2_cotton_medium, ("cotton", "light"): recipes_3_cotton_light, ("polyester", "dark"): recipes_4_polyester_dark, ("polycotton", "dark"): recipes_5_pc_dark, ("lycra","dark"): cotton_cotton_lycra } latent_heat = 494 def calculate_outputs(mlr, recipes, capacity): """Perform calculations for each machine.""" steam_consumption = [] moment_time = 0 time = [] initial_temp = [] final_temp = [] temp_grad = [] for i in recipes: time.append(moment_time) delta_t = recipes[i]["Duration"] moment_time += delta_t temp_diff = recipes[i]["final_temp"] - recipes[i]["init_temp"] final_temp.append(recipes[i]["final_temp"]) initial_temp.append(recipes[i]["init_temp"]) temp_grad.append(recipes[i]["temp.grad"]) temp = recipes[i]["temp.grad"] temp_diff = abs(temp_diff) steam_use = (capacity * mlr * temp_diff*1) + (capacity * temp_diff*1) # cp = 1 if temp != 0 : steam_ = steam_use*60/temp else: steam_ = steam_use*60 steam_kg_hr = steam_/latent_heat steam_consumption.append(round(steam_kg_hr,2)) return { "Steam Consumption": steam_consumption, "Time": time, "init_Temp": initial_temp, "final_Temp": final_temp, "temp_grad": temp_grad } def calculate_peak_avg_load(machine_results): """Calculate peak and average steam load for all machines.""" combined_steam_load = {} start_time_offset = 0 for machine, results in machine_results.items(): for t, load in zip(results["Time"], results["Steam Consumption"]): adjusted_time = t + start_time_offset if adjusted_time in combined_steam_load: combined_steam_load[adjusted_time] += load else: combined_steam_load[adjusted_time] = load start_time_offset += 10 # Each machine starts 10 units after the previous one peak_load = max(combined_steam_load.values()) avg_load = sum(combined_steam_load.values()) / len(combined_steam_load) return peak_load, avg_load def convert_df_to_csv(df): return df.to_csv(index=False).encode('utf-8') st.title("Dyeing Machine Load & Steam Calculator") machine_type = st.selectbox("Select Type of Machine", ['SoftFlow']) num_machines = st.number_input("Number of Dyeing Machines", min_value=1, value=5) mlr = st.number_input("Enter the MLR for the process", min_value=2, value=6) machine_capacities = {} st.write("### Enter Machine Capacities") for i in range(1, num_machines + 1): capacity = st.number_input(f"Capacity of Machine {i} (kg)", min_value=1, value=100) machine_capacities[f"{machine_type} {i}"] = capacity toggle_fetch = st.checkbox("Take pre-built Recipe") if toggle_fetch: fabric = st.radio("Choose Fabric Type", ["Cotton", "Polyester", "PolyCotton","Lycra"], index=0) shade = st.radio("Choose your Shade", ["Dark", "Medium", "Light", "White"]) fabric_type = fabric.strip().lower() shade = shade.strip().lower() recipes = recipes_dict.get((fabric_type, shade), {}) else: recipes = {} st.write("### Results") if "current_machine_index" not in st.session_state: st.session_state["current_machine_index"] = 0 machine_names = list(machine_capacities.keys()) machine_results = {} for machine in machine_names: machine_results[machine] = calculate_outputs(mlr, recipes, machine_capacities[machine]) peak_load, avg_load = calculate_peak_avg_load(machine_results) if st.button("Calculate Summary"): st.markdown( f"""

Summary

Peak Steam Load: {peak_load} kg/hr

Average Steam Load: {avg_load} kg/hr

""", unsafe_allow_html=True, ) col1, col2 = st.columns(2) with col1: if st.button("Previous Machine"): st.session_state["current_machine_index"] = (st.session_state["current_machine_index"] - 1) % len(machine_names) with col2: if st.button("Next Machine"): st.session_state["current_machine_index"] = (st.session_state["current_machine_index"] + 1) % len(machine_names) current_machine = machine_names[st.session_state["current_machine_index"]] st.write(f"### Calculations for {current_machine}") df_results = pd.DataFrame(machine_results[current_machine]) st.table(df_results) csv = convert_df_to_csv(df_results) st.download_button("Download Table as CSV", data=csv, file_name=f"{current_machine}_results.csv", mime='text/csv') st.header("Steam Load Variation Over Time") if st.button("Plot Steam Load Variation"): fig1 = plotter.plot_steam_load(machine_results[current_machine]['Time'], machine_results[current_machine]['Steam Consumption']) st.pyplot(fig1) st.header("Temperature Variation Over Time") if st.button("Plot Temperature Variation"): fig2 = plotter.plot_temperature_curve(machine_results[current_machine]['Time'], machine_results[current_machine]['init_Temp'], machine_results[current_machine]['final_Temp'], machine_results[current_machine]['temp_grad']) st.pyplot(fig2)