plotting / app.py
Shivraj8615's picture
Update app.py
d2bfb60 verified
import streamlit as st
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import io
def save_plot(fig):
buf = io.BytesIO()
fig.savefig(buf, format="png")
buf.seek(0)
return buf
def main():
st.title("Distribution Curve Plotting Dashboard")
uploaded_file = st.file_uploader("Upload an Excel file", type=["xls", "xlsx"])
if uploaded_file is not None:
df = pd.read_excel(uploaded_file)
st.write("Preview of Data:")
st.write(df.head())
numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist()
if numeric_columns:
selected_column = st.selectbox("Select a column for analysis (as named in the Excel file)", numeric_columns)
if selected_column:
data = df[selected_column].dropna()
std_dev = np.std(data, ddof=1)
st.write(f"**Calculated Standard Deviation:** {std_dev:.4f}")
# Distribution Plot
fig_dist, ax_dist = plt.subplots(figsize=(6, 5))
sns.histplot(data, kde=True, ax=ax_dist, bins=20, color='blue')
ax_dist.set_title(f"Distribution Plot of {selected_column}")
st.pyplot(fig_dist)
st.download_button("Download Distribution Plot", save_plot(fig_dist), file_name="distribution_plot.png", mime="image/png")
# Standard Deviation Plot
fig_std, ax_std = plt.subplots(figsize=(6, 5))
sns.lineplot(x=data.index, y=data, ax=ax_std, label='Data')
ax_std.axhline(y=np.mean(data), color='r', linestyle='--', label='Mean')
ax_std.axhline(y=np.mean(data) + std_dev, color='g', linestyle='--', label='+1 Std Dev')
ax_std.axhline(y=np.mean(data) - std_dev, color='g', linestyle='--', label='-1 Std Dev')
ax_std.legend()
ax_std.set_title(f"Standard Deviation Plot of {selected_column}")
st.pyplot(fig_std)
st.download_button("Download Standard Deviation Plot", save_plot(fig_std), file_name="std_dev_plot.png", mime="image/png")
else:
st.warning("No numeric columns found in the uploaded file.")
if __name__ == "__main__":
main()