import streamlit as st import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np import io def save_plot(fig): buf = io.BytesIO() fig.savefig(buf, format="png") buf.seek(0) return buf def main(): st.title("Distribution Curve Plotting Dashboard") uploaded_file = st.file_uploader("Upload an Excel file", type=["xls", "xlsx"]) if uploaded_file is not None: df = pd.read_excel(uploaded_file) st.write("Preview of Data:") st.write(df.head()) numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist() if numeric_columns: selected_column = st.selectbox("Select a column for analysis (as named in the Excel file)", numeric_columns) if selected_column: data = df[selected_column].dropna() std_dev = np.std(data, ddof=1) st.write(f"**Calculated Standard Deviation:** {std_dev:.4f}") # Distribution Plot fig_dist, ax_dist = plt.subplots(figsize=(6, 5)) sns.histplot(data, kde=True, ax=ax_dist, bins=20, color='blue') ax_dist.set_title(f"Distribution Plot of {selected_column}") st.pyplot(fig_dist) st.download_button("Download Distribution Plot", save_plot(fig_dist), file_name="distribution_plot.png", mime="image/png") # Standard Deviation Plot fig_std, ax_std = plt.subplots(figsize=(6, 5)) sns.lineplot(x=data.index, y=data, ax=ax_std, label='Data') ax_std.axhline(y=np.mean(data), color='r', linestyle='--', label='Mean') ax_std.axhline(y=np.mean(data) + std_dev, color='g', linestyle='--', label='+1 Std Dev') ax_std.axhline(y=np.mean(data) - std_dev, color='g', linestyle='--', label='-1 Std Dev') ax_std.legend() ax_std.set_title(f"Standard Deviation Plot of {selected_column}") st.pyplot(fig_std) st.download_button("Download Standard Deviation Plot", save_plot(fig_std), file_name="std_dev_plot.png", mime="image/png") else: st.warning("No numeric columns found in the uploaded file.") if __name__ == "__main__": main()