Spaces:
Sleeping
Sleeping
import argparse | |
import json | |
import os | |
import sys | |
from multiprocessing.pool import ThreadPool | |
from pathlib import Path | |
import numpy as np | |
import torch | |
from tqdm import tqdm | |
FILE = Path(__file__).resolve() | |
ROOT = FILE.parents[1] # YOLO root directory | |
if str(ROOT) not in sys.path: | |
sys.path.append(str(ROOT)) # add ROOT to PATH | |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative | |
import torch.nn.functional as F | |
import torchvision.transforms as transforms | |
from pycocotools import mask as maskUtils | |
from models.common import DetectMultiBackend | |
from models.yolo import SegmentationModel | |
from utils.callbacks import Callbacks | |
from utils.coco_utils import getCocoIds, getMappingId, getMappingIndex | |
from utils.general import (LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, | |
check_requirements, check_yaml, coco80_to_coco91_class, colorstr, increment_path, | |
non_max_suppression, print_args, scale_boxes, xywh2xyxy, xyxy2xywh) | |
from utils.metrics import ConfusionMatrix, box_iou | |
from utils.plots import output_to_target, plot_val_study | |
from utils.panoptic.dataloaders import create_dataloader | |
from utils.panoptic.general import mask_iou, process_mask, process_mask_upsample, scale_image | |
from utils.panoptic.metrics import Metrics, ap_per_class_box_and_mask, Semantic_Metrics | |
from utils.panoptic.plots import plot_images_and_masks | |
from utils.torch_utils import de_parallel, select_device, smart_inference_mode | |
def save_one_txt(predn, save_conf, shape, file): | |
# Save one txt result | |
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh | |
for *xyxy, conf, cls in predn.tolist(): | |
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | |
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format | |
with open(file, 'a') as f: | |
f.write(('%g ' * len(line)).rstrip() % line + '\n') | |
def save_one_json(predn, jdict, path, class_map, pred_masks): | |
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} | |
from pycocotools.mask import encode | |
def single_encode(x): | |
rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0] | |
rle["counts"] = rle["counts"].decode("utf-8") | |
return rle | |
image_id = int(path.stem) if path.stem.isnumeric() else path.stem | |
box = xyxy2xywh(predn[:, :4]) # xywh | |
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner | |
pred_masks = np.transpose(pred_masks, (2, 0, 1)) | |
with ThreadPool(NUM_THREADS) as pool: | |
rles = pool.map(single_encode, pred_masks) | |
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())): | |
jdict.append({ | |
'image_id': image_id, | |
'category_id': class_map[int(p[5])], | |
'bbox': [round(x, 3) for x in b], | |
'score': round(p[4], 5), | |
'segmentation': rles[i]}) | |
def process_batch(detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False): | |
""" | |
Return correct prediction matrix | |
Arguments: | |
detections (array[N, 6]), x1, y1, x2, y2, conf, class | |
labels (array[M, 5]), class, x1, y1, x2, y2 | |
Returns: | |
correct (array[N, 10]), for 10 IoU levels | |
""" | |
if masks: | |
if overlap: | |
nl = len(labels) | |
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1 | |
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640) | |
gt_masks = torch.where(gt_masks == index, 1.0, 0.0) | |
if gt_masks.shape[1:] != pred_masks.shape[1:]: | |
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0] | |
gt_masks = gt_masks.gt_(0.5) | |
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1)) | |
else: # boxes | |
iou = box_iou(labels[:, 1:], detections[:, :4]) | |
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool) | |
correct_class = labels[:, 0:1] == detections[:, 5] | |
for i in range(len(iouv)): | |
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match | |
if x[0].shape[0]: | |
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou] | |
if x[0].shape[0] > 1: | |
matches = matches[matches[:, 2].argsort()[::-1]] | |
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] | |
# matches = matches[matches[:, 2].argsort()[::-1]] | |
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] | |
correct[matches[:, 1].astype(int), i] = True | |
return torch.tensor(correct, dtype=torch.bool, device=iouv.device) | |
def run( | |
data, | |
weights=None, # model.pt path(s) | |
batch_size=32, # batch size | |
imgsz=640, # inference size (pixels) | |
conf_thres=0.001, # confidence threshold | |
iou_thres=0.6, # NMS IoU threshold | |
max_det=300, # maximum detections per image | |
task='val', # train, val, test, speed or study | |
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
workers=8, # max dataloader workers (per RANK in DDP mode) | |
single_cls=False, # treat as single-class dataset | |
augment=False, # augmented inference | |
verbose=False, # verbose output | |
save_txt=False, # save results to *.txt | |
save_hybrid=False, # save label+prediction hybrid results to *.txt | |
save_conf=False, # save confidences in --save-txt labels | |
save_json=False, # save a COCO-JSON results file | |
project=ROOT / 'runs/val-pan', # save to project/name | |
name='exp', # save to project/name | |
exist_ok=False, # existing project/name ok, do not increment | |
half=True, # use FP16 half-precision inference | |
dnn=False, # use OpenCV DNN for ONNX inference | |
model=None, | |
dataloader=None, | |
save_dir=Path(''), | |
plots=True, | |
overlap=False, | |
mask_downsample_ratio=1, | |
compute_loss=None, | |
callbacks=Callbacks(), | |
): | |
if save_json: | |
check_requirements(['pycocotools']) | |
process = process_mask_upsample # more accurate | |
else: | |
process = process_mask # faster | |
# Initialize/load model and set device | |
training = model is not None | |
if training: # called by train.py | |
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model | |
half &= device.type != 'cpu' # half precision only supported on CUDA | |
model.half() if half else model.float() | |
nm = de_parallel(model).model[-1].nm # number of masks | |
else: # called directly | |
device = select_device(device, batch_size=batch_size) | |
# Directories | |
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run | |
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir | |
# Load model | |
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) | |
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine | |
imgsz = check_img_size(imgsz, s=stride) # check image size | |
half = model.fp16 # FP16 supported on limited backends with CUDA | |
nm = de_parallel(model).model.model[-1].nm if isinstance(model, SegmentationModel) else 32 # number of masks | |
if engine: | |
batch_size = model.batch_size | |
else: | |
device = model.device | |
if not (pt or jit): | |
batch_size = 1 # export.py models default to batch-size 1 | |
LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models') | |
# Data | |
data = check_dataset(data) # check | |
# Configure | |
model.eval() | |
cuda = device.type != 'cpu' | |
#is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset | |
is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'val2017.txt') # COCO dataset | |
nc = 1 if single_cls else int(data['nc']) # number of classes | |
stuff_names = data.get('stuff_names', []) # names of stuff classes | |
stuff_nc = len(stuff_names) # number of stuff classes | |
iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95 | |
niou = iouv.numel() | |
# Semantic Segmentation | |
img_id_list = [] | |
# Dataloader | |
if not training: | |
if pt and not single_cls: # check --weights are trained on --data | |
ncm = model.model.nc | |
assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \ | |
f'classes). Pass correct combination of --weights and --data that are trained together.' | |
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup | |
pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks | |
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images | |
dataloader = create_dataloader(data[task], | |
imgsz, | |
batch_size, | |
stride, | |
single_cls, | |
pad=pad, | |
rect=rect, | |
workers=workers, | |
prefix=colorstr(f'{task}: '), | |
overlap_mask=overlap, | |
mask_downsample_ratio=mask_downsample_ratio)[0] | |
seen = 0 | |
confusion_matrix = ConfusionMatrix(nc=nc) | |
names = model.names if hasattr(model, 'names') else model.module.names # get class names | |
if isinstance(names, (list, tuple)): # old format | |
names = dict(enumerate(names)) | |
class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) | |
s = ('%22s' + '%11s' * 12) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)", "Mask(P", "R", | |
"mAP50", "mAP50-95)", 'S(MIoU', 'FWIoU)') | |
dt = Profile(), Profile(), Profile() | |
metrics = Metrics() | |
semantic_metrics = Semantic_Metrics(nc = (nc + stuff_nc), device = device) | |
loss = torch.zeros(6, device=device) | |
jdict, stats = [], [] | |
semantic_jdict = [] | |
# callbacks.run('on_val_start') | |
pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar | |
for batch_i, (im, targets, paths, shapes, masks, semasks) in enumerate(pbar): | |
# callbacks.run('on_val_batch_start') | |
with dt[0]: | |
if cuda: | |
im = im.to(device, non_blocking=True) | |
targets = targets.to(device) | |
masks = masks.to(device) | |
semasks = semasks.to(device) | |
masks = masks.float() | |
semasks = semasks.float() | |
im = im.half() if half else im.float() # uint8 to fp16/32 | |
im /= 255 # 0 - 255 to 0.0 - 1.0 | |
nb, _, height, width = im.shape # batch size, channels, height, width | |
# Inference | |
with dt[1]: | |
preds, train_out = model(im)# if compute_loss else (*model(im, augment=augment)[:2], None) | |
#train_out, preds, protos = p if len(p) == 3 else p[1] | |
#preds = p | |
#train_out = p[1][0] if len(p[1]) == 3 else p[0] | |
# protos = train_out[-1] | |
#print(preds.shape) | |
#print(train_out[0].shape) | |
#print(train_out[1].shape) | |
#print(train_out[2].shape) | |
_, pred_masks, protos, psemasks = train_out | |
# Loss | |
if compute_loss: | |
loss += compute_loss(train_out, targets, masks, semasks = semasks)[1] # box, obj, cls | |
# NMS | |
targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels | |
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling | |
with dt[2]: | |
preds = non_max_suppression(preds, | |
conf_thres, | |
iou_thres, | |
labels=lb, | |
multi_label=True, | |
agnostic=single_cls, | |
max_det=max_det, | |
nm=nm) | |
# Metrics | |
plot_masks = [] # masks for plotting | |
plot_semasks = [] # masks for plotting | |
if training: | |
semantic_metrics.update(psemasks, semasks) | |
else: | |
_, _, smh, smw = semasks.shape | |
semantic_metrics.update(torch.nn.functional.interpolate(psemasks, size = (smh, smw), mode = 'bilinear', align_corners = False), semasks) | |
if plots and batch_i < 3: | |
plot_semasks.append(psemasks.clone().detach().cpu()) | |
for si, (pred, proto, psemask) in enumerate(zip(preds, protos, psemasks)): | |
labels = targets[targets[:, 0] == si, 1:] | |
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions | |
path, shape = Path(paths[si]), shapes[si][0] | |
image_id = path.stem | |
img_id_list.append(image_id) | |
correct_masks = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init | |
correct_bboxes = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init | |
seen += 1 | |
if npr == 0: | |
if nl: | |
stats.append((correct_masks, correct_bboxes, *torch.zeros((2, 0), device=device), labels[:, 0])) | |
if plots: | |
confusion_matrix.process_batch(detections=None, labels=labels[:, 0]) | |
else: | |
# Masks | |
midx = [si] if overlap else targets[:, 0] == si | |
gt_masks = masks[midx] | |
pred_masks = process(proto, pred[:, 6:], pred[:, :4], shape=im[si].shape[1:]) | |
# Predictions | |
if single_cls: | |
pred[:, 5] = 0 | |
predn = pred.clone() | |
scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred | |
# Evaluate | |
if nl: | |
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes | |
scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels | |
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels | |
correct_bboxes = process_batch(predn, labelsn, iouv) | |
correct_masks = process_batch(predn, labelsn, iouv, pred_masks, gt_masks, overlap=overlap, masks=True) | |
if plots: | |
confusion_matrix.process_batch(predn, labelsn) | |
stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0])) # (conf, pcls, tcls) | |
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8) | |
if plots and batch_i < 3: | |
plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot | |
# Save/log | |
if save_txt: | |
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') | |
if save_json: | |
pred_masks = scale_image(im[si].shape[1:], | |
pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1]) | |
save_one_json(predn, jdict, path, class_map, pred_masks) # append to COCO-JSON dictionary | |
# callbacks.run('on_val_image_end', pred, predn, path, names, im[si]) | |
# Semantic Segmentation | |
h0, w0 = shape | |
# resize | |
_, mask_h, mask_w = psemask.shape | |
h_ratio = mask_h / h0 | |
w_ratio = mask_w / w0 | |
if h_ratio == w_ratio: | |
psemask = torch.nn.functional.interpolate(psemask[None, :], size = (h0, w0), mode = 'bilinear', align_corners = False) | |
else: | |
transform = transforms.CenterCrop((h0, w0)) | |
if (1 != h_ratio) and (1 != w_ratio): | |
h_new = h0 if (h_ratio < w_ratio) else int(mask_h / w_ratio) | |
w_new = w0 if (h_ratio > w_ratio) else int(mask_w / h_ratio) | |
psemask = torch.nn.functional.interpolate(psemask[None, :], size = (h_new, w_new), mode = 'bilinear', align_corners = False) | |
psemask = transform(psemask) | |
psemask = torch.squeeze(psemask) | |
nc, h, w = psemask.shape | |
semantic_mask = torch.flatten(psemask, start_dim = 1).permute(1, 0) # class x h x w -> (h x w) x class | |
max_idx = semantic_mask.argmax(1) | |
output_masks = torch.zeros(semantic_mask.shape).scatter(1, max_idx.cpu().unsqueeze(1), 1.0) # one hot: (h x w) x class | |
output_masks = torch.reshape(output_masks.permute(1, 0), (nc, h, w)) # (h x w) x class -> class x h x w | |
psemask = output_masks.to(device = device) | |
# TODO: check is_coco | |
instances_ids = getCocoIds(name = 'instances') | |
stuff_mask = torch.zeros((h, w), device = device) | |
check_semantic_mask = False | |
for idx, pred_semantic_mask in enumerate(psemask): | |
category_id = int(getMappingId(idx)) | |
if 183 == category_id: | |
# set all non-stuff pixels to other | |
pred_semantic_mask = (torch.logical_xor(stuff_mask, torch.ones((h, w), device = device))).int() | |
# ignore the classes which all zeros / unlabeled class | |
if (0 >= torch.max(pred_semantic_mask)) or (0 >= category_id): | |
continue | |
if category_id not in instances_ids: | |
# record all stuff mask | |
stuff_mask = torch.logical_or(stuff_mask, pred_semantic_mask) | |
if (category_id not in instances_ids): | |
rle = maskUtils.encode(np.asfortranarray(pred_semantic_mask.cpu(), dtype = np.uint8)) | |
rle['counts'] = rle['counts'].decode('utf-8') | |
temp_d = { | |
'image_id': int(image_id) if image_id.isnumeric() else image_id, | |
'category_id': category_id, | |
'segmentation': rle, | |
'score': 1 | |
} | |
semantic_jdict.append(temp_d) | |
check_semantic_mask = True | |
if not check_semantic_mask: | |
# append a other mask for evaluation if the image without any mask | |
other_mask = (torch.ones((h, w), device = device)).int() | |
rle = maskUtils.encode(np.asfortranarray(other_mask.cpu(), dtype = np.uint8)) | |
rle['counts'] = rle['counts'].decode('utf-8') | |
temp_d = { | |
'image_id': int(image_id) if image_id.isnumeric() else image_id, | |
'category_id': 183, | |
'segmentation': rle, | |
'score': 1 | |
} | |
semantic_jdict.append(temp_d) | |
# Plot images | |
if plots and batch_i < 3: | |
if len(plot_masks): | |
plot_masks = torch.cat(plot_masks, dim=0) | |
if len(plot_semasks): | |
plot_semasks = torch.cat(plot_semasks, dim = 0) | |
plot_images_and_masks(im, targets, masks, semasks, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) | |
plot_images_and_masks(im, output_to_target(preds, max_det=15), plot_masks, plot_semasks, paths, | |
save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred | |
# callbacks.run('on_val_batch_end') | |
# Compute metrics | |
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy | |
if len(stats) and stats[0].any(): | |
results = ap_per_class_box_and_mask(*stats, plot=plots, save_dir=save_dir, names=names) | |
metrics.update(results) | |
nt = np.bincount(stats[4].astype(int), minlength=nc) # number of targets per class | |
# Print results | |
pf = '%22s' + '%11i' * 2 + '%11.3g' * 10 # print format | |
LOGGER.info(pf % ("all", seen, nt.sum(), *metrics.mean_results(), *semantic_metrics.results())) | |
if nt.sum() == 0: | |
LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels') | |
# Print results per class | |
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): | |
for i, c in enumerate(metrics.ap_class_index): | |
LOGGER.info(pf % (names[c], seen, nt[c], *metrics.class_result(i), *semantic_metrics.results())) | |
# Print speeds | |
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image | |
if not training: | |
shape = (batch_size, 3, imgsz, imgsz) | |
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t) | |
# Plots | |
if plots: | |
confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) | |
# callbacks.run('on_val_end') | |
mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask = metrics.mean_results() | |
miou_sem, fwiou_sem = semantic_metrics.results() | |
semantic_metrics.reset() | |
# Save JSON | |
if save_json and len(jdict): | |
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights | |
anno_path = Path(data.get('path', '../coco')) | |
anno_json = str(anno_path / 'annotations/instances_val2017.json') # annotations json | |
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json | |
LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...') | |
with open(pred_json, 'w') as f: | |
json.dump(jdict, f) | |
semantic_anno_json = str(anno_path / 'annotations/stuff_val2017.json') # annotations json | |
semantic_pred_json = str(save_dir / f"{w}_predictions_stuff.json") # predictions json | |
LOGGER.info(f'\nsaving {semantic_pred_json}...') | |
with open(semantic_pred_json, 'w') as f: | |
json.dump(semantic_jdict, f) | |
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb | |
from pycocotools.coco import COCO | |
from pycocotools.cocoeval import COCOeval | |
anno = COCO(anno_json) # init annotations api | |
pred = anno.loadRes(pred_json) # init predictions api | |
results = [] | |
for eval in COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm'): | |
if is_coco: | |
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # img ID to evaluate | |
eval.evaluate() | |
eval.accumulate() | |
eval.summarize() | |
results.extend(eval.stats[:2]) # update results (mAP@0.5:0.95, mAP@0.5) | |
map_bbox, map50_bbox, map_mask, map50_mask = results | |
# Semantic Segmentation | |
from utils.stuff_seg.cocostuffeval import COCOStuffeval | |
LOGGER.info(f'\nEvaluating pycocotools stuff... ') | |
imgIds = [int(x) for x in img_id_list] | |
stuffGt = COCO(semantic_anno_json) # initialize COCO ground truth api | |
stuffDt = stuffGt.loadRes(semantic_pred_json) # initialize COCO pred api | |
cocoStuffEval = COCOStuffeval(stuffGt, stuffDt) | |
cocoStuffEval.params.imgIds = imgIds # image IDs to evaluate | |
cocoStuffEval.evaluate() | |
stats, statsClass = cocoStuffEval.summarize() | |
stuffIds = getCocoIds(name = 'stuff') | |
title = ' {:<5} | {:^6} | {:^6} '.format('class', 'iou', 'macc') if (0 >= len(stuff_names)) else \ | |
' {:<5} | {:<20} | {:^6} | {:^6} '.format('class', 'class name', 'iou', 'macc') | |
print(title) | |
for idx, (iou, macc) in enumerate(zip(statsClass['ious'], statsClass['maccs'])): | |
id = (idx + 1) | |
if id not in stuffIds: | |
continue | |
content = ' {:<5} | {:0.4f} | {:0.4f} '.format(str(id), iou, macc) if (0 >= len(stuff_names)) else \ | |
' {:<5} | {:<20} | {:0.4f} | {:0.4f} '.format(str(id), str(stuff_names[getMappingIndex(id, name = 'stuff')]), iou, macc) | |
print(content) | |
except Exception as e: | |
LOGGER.info(f'pycocotools unable to run: {e}') | |
# Return results | |
model.float() # for training | |
if not training: | |
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' | |
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") | |
final_metric = mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask, miou_sem, fwiou_sem | |
return (*final_metric, *(loss.cpu() / len(dataloader)).tolist()), metrics.get_maps(nc), t | |
def parse_opt(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-pan.yaml', help='dataset.yaml path') | |
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo-pan.pt', help='model path(s)') | |
parser.add_argument('--batch-size', type=int, default=32, help='batch size') | |
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') | |
parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold') | |
parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold') | |
parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image') | |
parser.add_argument('--task', default='val', help='train, val, test, speed or study') | |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') | |
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') | |
parser.add_argument('--augment', action='store_true', help='augmented inference') | |
parser.add_argument('--verbose', action='store_true', help='report mAP by class') | |
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') | |
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt') | |
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') | |
parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file') | |
parser.add_argument('--project', default=ROOT / 'runs/val-pan', help='save results to project/name') | |
parser.add_argument('--name', default='exp', help='save to project/name') | |
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') | |
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') | |
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') | |
opt = parser.parse_args() | |
opt.data = check_yaml(opt.data) # check YAML | |
# opt.save_json |= opt.data.endswith('coco.yaml') | |
opt.save_txt |= opt.save_hybrid | |
print_args(vars(opt)) | |
return opt | |
def main(opt): | |
#check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop')) | |
if opt.task in ('train', 'val', 'test'): # run normally | |
if opt.conf_thres > 0.001: # https://github.com/ | |
LOGGER.warning(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results') | |
if opt.save_hybrid: | |
LOGGER.warning('WARNING ⚠️ --save-hybrid returns high mAP from hybrid labels, not from predictions alone') | |
run(**vars(opt)) | |
else: | |
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights] | |
opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results | |
if opt.task == 'speed': # speed benchmarks | |
# python val.py --task speed --data coco.yaml --batch 1 --weights yolo.pt... | |
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False | |
for opt.weights in weights: | |
run(**vars(opt), plots=False) | |
elif opt.task == 'study': # speed vs mAP benchmarks | |
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolo.pt... | |
for opt.weights in weights: | |
f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to | |
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis | |
for opt.imgsz in x: # img-size | |
LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...') | |
r, _, t = run(**vars(opt), plots=False) | |
y.append(r + t) # results and times | |
np.savetxt(f, y, fmt='%10.4g') # save | |
os.system('zip -r study.zip study_*.txt') | |
plot_val_study(x=x) # plot | |
if __name__ == "__main__": | |
opt = parse_opt() | |
main(opt) | |