Spaces:
Runtime error
Runtime error
shamik
commited on
Commit
•
e61ddf0
1
Parent(s):
fca9772
Added the required files to run the app.
Browse files- app.py +116 -0
- assets/sample_input.mp3 +0 -0
- assets/sample_input_2.mp3 +0 -0
- lang_list.py +255 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
|
6 |
+
from transformers import SeamlessM4Tv2Model, AutoProcessor
|
7 |
+
from lang_list import (
|
8 |
+
ASR_TARGET_LANGUAGE_NAMES,
|
9 |
+
LANGUAGE_NAME_TO_CODE,
|
10 |
+
S2ST_TARGET_LANGUAGE_NAMES,
|
11 |
+
S2TT_TARGET_LANGUAGE_NAMES,
|
12 |
+
T2ST_TARGET_LANGUAGE_NAMES,
|
13 |
+
T2TT_TARGET_LANGUAGE_NAMES,
|
14 |
+
TEXT_SOURCE_LANGUAGE_NAMES,
|
15 |
+
)
|
16 |
+
|
17 |
+
processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large")
|
18 |
+
model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large")
|
19 |
+
|
20 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
21 |
+
|
22 |
+
AUDIO_SAMPLE_RATE = 16000.0
|
23 |
+
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
24 |
+
DEFAULT_TARGET_LANGUAGE = "French"
|
25 |
+
|
26 |
+
if torch.cuda.is_available():
|
27 |
+
device = torch.device("cuda:0")
|
28 |
+
dtype = torch.float16
|
29 |
+
else:
|
30 |
+
device = torch.device("cpu")
|
31 |
+
dtype = torch.float32
|
32 |
+
|
33 |
+
def preprocess_audio(input_audio: str) -> None:
|
34 |
+
arr, org_sr = torchaudio.load(input_audio)
|
35 |
+
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
|
36 |
+
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
|
37 |
+
if new_arr.shape[1] > max_length:
|
38 |
+
new_arr = new_arr[:, :max_length]
|
39 |
+
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
|
40 |
+
torchaudio.save(input_audio, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
|
41 |
+
|
42 |
+
|
43 |
+
def run_s2st(
|
44 |
+
input_audio: str, source_language: str, target_language: str
|
45 |
+
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
46 |
+
preprocess_audio(input_audio)
|
47 |
+
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
|
48 |
+
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
49 |
+
arr, org_sr = torchaudio.load(input_audio)
|
50 |
+
audio_inputs = processor(audios=arr, return_tensors="pt",
|
51 |
+
sampling_rate=model.config.sampling_rate).to(device)
|
52 |
+
output = model.generate(**audio_inputs, return_intermediate_token_ids=True,
|
53 |
+
tgt_lang=target_language_code,)
|
54 |
+
|
55 |
+
audio_array_from_audio = output[0].cpu().numpy().squeeze()
|
56 |
+
text_tokens = output[2]
|
57 |
+
translated_text_from_text = processor.decode(text_tokens.tolist()[0], skip_special_tokens=True)
|
58 |
+
return (int(AUDIO_SAMPLE_RATE), audio_array_from_audio), translated_text_from_text
|
59 |
+
|
60 |
+
description = """
|
61 |
+
# Direct Speech to Speech Translation
|
62 |
+
|
63 |
+
This demo uses SeamlessM4T V2 to translate one speech directly into another.
|
64 |
+
The model being used here is [facebook/seamless-m4t-v2-large](https://huggingface.co/facebook/seamless-m4t-v2-large).
|
65 |
+
|
66 |
+
SeamlessM4T V2 is unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST) translation and more, without relying on multiple separate models.
|
67 |
+
"""
|
68 |
+
|
69 |
+
with gr.Blocks() as demo_s2st:
|
70 |
+
gr.Markdown(description)
|
71 |
+
with gr.Row():
|
72 |
+
with gr.Column():
|
73 |
+
with gr.Group():
|
74 |
+
input_audio = gr.Audio(label="Input speech", type="filepath")
|
75 |
+
source_language = gr.Dropdown(
|
76 |
+
label="Source language",
|
77 |
+
choices=ASR_TARGET_LANGUAGE_NAMES,
|
78 |
+
value="English",
|
79 |
+
)
|
80 |
+
target_language = gr.Dropdown(
|
81 |
+
label="Target language",
|
82 |
+
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
83 |
+
value=DEFAULT_TARGET_LANGUAGE,
|
84 |
+
)
|
85 |
+
btn = gr.Button("Translate")
|
86 |
+
with gr.Column():
|
87 |
+
with gr.Group():
|
88 |
+
output_audio = gr.Audio(
|
89 |
+
label="Translated speech",
|
90 |
+
autoplay=False,
|
91 |
+
streaming=False,
|
92 |
+
type="numpy",
|
93 |
+
)
|
94 |
+
output_text = gr.Textbox(label="Translated text")
|
95 |
+
|
96 |
+
gr.Examples(
|
97 |
+
examples=[
|
98 |
+
["assets/sample_input.mp3", "English", "French"],
|
99 |
+
["assets/sample_input.mp3", "English", "Mandarin Chinese"],
|
100 |
+
["assets/sample_input_2.mp3", "English", "Hindi"],
|
101 |
+
["assets/sample_input_2.mp3", "English", "Spanish"],
|
102 |
+
],
|
103 |
+
inputs=[input_audio, source_language, target_language],
|
104 |
+
outputs=[output_audio, output_text],
|
105 |
+
fn=run_s2st,
|
106 |
+
cache_examples=True,
|
107 |
+
allow_flagging="never",
|
108 |
+
)
|
109 |
+
|
110 |
+
btn.click(
|
111 |
+
fn=run_s2st,
|
112 |
+
inputs=[input_audio, source_language, target_language],
|
113 |
+
outputs=[output_audio, output_text],
|
114 |
+
)
|
115 |
+
|
116 |
+
demo_s2st.launch()
|
assets/sample_input.mp3
ADDED
Binary file (10.3 kB). View file
|
|
assets/sample_input_2.mp3
ADDED
Binary file (30.6 kB). View file
|
|
lang_list.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Language dict
|
2 |
+
language_code_to_name = {
|
3 |
+
"afr": "Afrikaans",
|
4 |
+
"amh": "Amharic",
|
5 |
+
"arb": "Modern Standard Arabic",
|
6 |
+
"ary": "Moroccan Arabic",
|
7 |
+
"arz": "Egyptian Arabic",
|
8 |
+
"asm": "Assamese",
|
9 |
+
"ast": "Asturian",
|
10 |
+
"azj": "North Azerbaijani",
|
11 |
+
"bel": "Belarusian",
|
12 |
+
"ben": "Bengali",
|
13 |
+
"bos": "Bosnian",
|
14 |
+
"bul": "Bulgarian",
|
15 |
+
"cat": "Catalan",
|
16 |
+
"ceb": "Cebuano",
|
17 |
+
"ces": "Czech",
|
18 |
+
"ckb": "Central Kurdish",
|
19 |
+
"cmn": "Mandarin Chinese",
|
20 |
+
"cym": "Welsh",
|
21 |
+
"dan": "Danish",
|
22 |
+
"deu": "German",
|
23 |
+
"ell": "Greek",
|
24 |
+
"eng": "English",
|
25 |
+
"est": "Estonian",
|
26 |
+
"eus": "Basque",
|
27 |
+
"fin": "Finnish",
|
28 |
+
"fra": "French",
|
29 |
+
"gaz": "West Central Oromo",
|
30 |
+
"gle": "Irish",
|
31 |
+
"glg": "Galician",
|
32 |
+
"guj": "Gujarati",
|
33 |
+
"heb": "Hebrew",
|
34 |
+
"hin": "Hindi",
|
35 |
+
"hrv": "Croatian",
|
36 |
+
"hun": "Hungarian",
|
37 |
+
"hye": "Armenian",
|
38 |
+
"ibo": "Igbo",
|
39 |
+
"ind": "Indonesian",
|
40 |
+
"isl": "Icelandic",
|
41 |
+
"ita": "Italian",
|
42 |
+
"jav": "Javanese",
|
43 |
+
"jpn": "Japanese",
|
44 |
+
"kam": "Kamba",
|
45 |
+
"kan": "Kannada",
|
46 |
+
"kat": "Georgian",
|
47 |
+
"kaz": "Kazakh",
|
48 |
+
"kea": "Kabuverdianu",
|
49 |
+
"khk": "Halh Mongolian",
|
50 |
+
"khm": "Khmer",
|
51 |
+
"kir": "Kyrgyz",
|
52 |
+
"kor": "Korean",
|
53 |
+
"lao": "Lao",
|
54 |
+
"lit": "Lithuanian",
|
55 |
+
"ltz": "Luxembourgish",
|
56 |
+
"lug": "Ganda",
|
57 |
+
"luo": "Luo",
|
58 |
+
"lvs": "Standard Latvian",
|
59 |
+
"mai": "Maithili",
|
60 |
+
"mal": "Malayalam",
|
61 |
+
"mar": "Marathi",
|
62 |
+
"mkd": "Macedonian",
|
63 |
+
"mlt": "Maltese",
|
64 |
+
"mni": "Meitei",
|
65 |
+
"mya": "Burmese",
|
66 |
+
"nld": "Dutch",
|
67 |
+
"nno": "Norwegian Nynorsk",
|
68 |
+
"nob": "Norwegian Bokm\u00e5l",
|
69 |
+
"npi": "Nepali",
|
70 |
+
"nya": "Nyanja",
|
71 |
+
"oci": "Occitan",
|
72 |
+
"ory": "Odia",
|
73 |
+
"pan": "Punjabi",
|
74 |
+
"pbt": "Southern Pashto",
|
75 |
+
"pes": "Western Persian",
|
76 |
+
"pol": "Polish",
|
77 |
+
"por": "Portuguese",
|
78 |
+
"ron": "Romanian",
|
79 |
+
"rus": "Russian",
|
80 |
+
"slk": "Slovak",
|
81 |
+
"slv": "Slovenian",
|
82 |
+
"sna": "Shona",
|
83 |
+
"snd": "Sindhi",
|
84 |
+
"som": "Somali",
|
85 |
+
"spa": "Spanish",
|
86 |
+
"srp": "Serbian",
|
87 |
+
"swe": "Swedish",
|
88 |
+
"swh": "Swahili",
|
89 |
+
"tam": "Tamil",
|
90 |
+
"tel": "Telugu",
|
91 |
+
"tgk": "Tajik",
|
92 |
+
"tgl": "Tagalog",
|
93 |
+
"tha": "Thai",
|
94 |
+
"tur": "Turkish",
|
95 |
+
"ukr": "Ukrainian",
|
96 |
+
"urd": "Urdu",
|
97 |
+
"uzn": "Northern Uzbek",
|
98 |
+
"vie": "Vietnamese",
|
99 |
+
"xho": "Xhosa",
|
100 |
+
"yor": "Yoruba",
|
101 |
+
"yue": "Cantonese",
|
102 |
+
"zlm": "Colloquial Malay",
|
103 |
+
"zsm": "Standard Malay",
|
104 |
+
"zul": "Zulu",
|
105 |
+
}
|
106 |
+
LANGUAGE_NAME_TO_CODE = {v: k for k, v in language_code_to_name.items()}
|
107 |
+
|
108 |
+
# Source langs: S2ST / S2TT / ASR don't need source lang
|
109 |
+
# T2TT / T2ST use this
|
110 |
+
text_source_language_codes = [
|
111 |
+
"afr",
|
112 |
+
"amh",
|
113 |
+
"arb",
|
114 |
+
"ary",
|
115 |
+
"arz",
|
116 |
+
"asm",
|
117 |
+
"azj",
|
118 |
+
"bel",
|
119 |
+
"ben",
|
120 |
+
"bos",
|
121 |
+
"bul",
|
122 |
+
"cat",
|
123 |
+
"ceb",
|
124 |
+
"ces",
|
125 |
+
"ckb",
|
126 |
+
"cmn",
|
127 |
+
"cym",
|
128 |
+
"dan",
|
129 |
+
"deu",
|
130 |
+
"ell",
|
131 |
+
"eng",
|
132 |
+
"est",
|
133 |
+
"eus",
|
134 |
+
"fin",
|
135 |
+
"fra",
|
136 |
+
"gaz",
|
137 |
+
"gle",
|
138 |
+
"glg",
|
139 |
+
"guj",
|
140 |
+
"heb",
|
141 |
+
"hin",
|
142 |
+
"hrv",
|
143 |
+
"hun",
|
144 |
+
"hye",
|
145 |
+
"ibo",
|
146 |
+
"ind",
|
147 |
+
"isl",
|
148 |
+
"ita",
|
149 |
+
"jav",
|
150 |
+
"jpn",
|
151 |
+
"kan",
|
152 |
+
"kat",
|
153 |
+
"kaz",
|
154 |
+
"khk",
|
155 |
+
"khm",
|
156 |
+
"kir",
|
157 |
+
"kor",
|
158 |
+
"lao",
|
159 |
+
"lit",
|
160 |
+
"lug",
|
161 |
+
"luo",
|
162 |
+
"lvs",
|
163 |
+
"mai",
|
164 |
+
"mal",
|
165 |
+
"mar",
|
166 |
+
"mkd",
|
167 |
+
"mlt",
|
168 |
+
"mni",
|
169 |
+
"mya",
|
170 |
+
"nld",
|
171 |
+
"nno",
|
172 |
+
"nob",
|
173 |
+
"npi",
|
174 |
+
"nya",
|
175 |
+
"ory",
|
176 |
+
"pan",
|
177 |
+
"pbt",
|
178 |
+
"pes",
|
179 |
+
"pol",
|
180 |
+
"por",
|
181 |
+
"ron",
|
182 |
+
"rus",
|
183 |
+
"slk",
|
184 |
+
"slv",
|
185 |
+
"sna",
|
186 |
+
"snd",
|
187 |
+
"som",
|
188 |
+
"spa",
|
189 |
+
"srp",
|
190 |
+
"swe",
|
191 |
+
"swh",
|
192 |
+
"tam",
|
193 |
+
"tel",
|
194 |
+
"tgk",
|
195 |
+
"tgl",
|
196 |
+
"tha",
|
197 |
+
"tur",
|
198 |
+
"ukr",
|
199 |
+
"urd",
|
200 |
+
"uzn",
|
201 |
+
"vie",
|
202 |
+
"yor",
|
203 |
+
"yue",
|
204 |
+
"zsm",
|
205 |
+
"zul",
|
206 |
+
]
|
207 |
+
TEXT_SOURCE_LANGUAGE_NAMES = sorted([language_code_to_name[code] for code in text_source_language_codes])
|
208 |
+
|
209 |
+
# Target langs:
|
210 |
+
# S2ST / T2ST
|
211 |
+
s2st_target_language_codes = [
|
212 |
+
"eng",
|
213 |
+
"arb",
|
214 |
+
"ben",
|
215 |
+
"cat",
|
216 |
+
"ces",
|
217 |
+
"cmn",
|
218 |
+
"cym",
|
219 |
+
"dan",
|
220 |
+
"deu",
|
221 |
+
"est",
|
222 |
+
"fin",
|
223 |
+
"fra",
|
224 |
+
"hin",
|
225 |
+
"ind",
|
226 |
+
"ita",
|
227 |
+
"jpn",
|
228 |
+
"kor",
|
229 |
+
"mlt",
|
230 |
+
"nld",
|
231 |
+
"pes",
|
232 |
+
"pol",
|
233 |
+
"por",
|
234 |
+
"ron",
|
235 |
+
"rus",
|
236 |
+
"slk",
|
237 |
+
"spa",
|
238 |
+
"swe",
|
239 |
+
"swh",
|
240 |
+
"tel",
|
241 |
+
"tgl",
|
242 |
+
"tha",
|
243 |
+
"tur",
|
244 |
+
"ukr",
|
245 |
+
"urd",
|
246 |
+
"uzn",
|
247 |
+
"vie",
|
248 |
+
]
|
249 |
+
S2ST_TARGET_LANGUAGE_NAMES = sorted([language_code_to_name[code] for code in s2st_target_language_codes])
|
250 |
+
T2ST_TARGET_LANGUAGE_NAMES = S2ST_TARGET_LANGUAGE_NAMES
|
251 |
+
|
252 |
+
# S2TT / T2TT / ASR
|
253 |
+
S2TT_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES
|
254 |
+
T2TT_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES
|
255 |
+
ASR_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch==2.1.0
|
3 |
+
torchaudio==2.1.0
|