shamik
commited on
Commit
•
b0361e0
1
Parent(s):
aa2ad2d
Added a gitignore and modified the app to use a german checkpoint for speech generation.
Browse files- .gitignore +1 -0
- app.py +15 -16
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.ipynb_checkpoints/
|
app.py
CHANGED
@@ -3,7 +3,7 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -11,25 +11,24 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
11 |
# load speech translation checkpoint
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
-
|
20 |
-
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
-
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
29 |
def synthesise(text):
|
30 |
-
inputs =
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|
@@ -39,9 +38,9 @@ def speech_to_speech_translation(audio):
|
|
39 |
return 16000, synthesised_speech
|
40 |
|
41 |
|
42 |
-
title = "Cascaded Speech To Speech Translation"
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
45 |
|
46 |
The below diagram shows how the cascaded speech to speech translation works.
|
47 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
from transformers import VitsModel, VitsTokenizer, pipeline
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
11 |
# load speech translation checkpoint
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
+
# loading the deutsch multilingual checkpoint
|
15 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-deu")
|
16 |
+
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-deu")
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def translate(audio):
|
19 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe" , "language": "de"})
|
20 |
return outputs["text"]
|
21 |
|
22 |
|
23 |
def synthesise(text):
|
24 |
+
inputs = tokenizer(text, return_tensors="pt")
|
25 |
+
input_ids = inputs["input_ids"]
|
26 |
+
|
27 |
+
with torch.no_grad():
|
28 |
+
outputs = model(input_ids)
|
29 |
+
|
30 |
+
speech = outputs["waveform"]
|
31 |
+
return speech
|
32 |
|
33 |
|
34 |
def speech_to_speech_translation(audio):
|
|
|
38 |
return 16000, synthesised_speech
|
39 |
|
40 |
|
41 |
+
title = "Cascaded Speech To Speech Translation in German"
|
42 |
description = """
|
43 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in German. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Meta's [Massively Multilingual Speech German](https://huggingface.co/facebook/mms-tts-deu) model for text-to-speech.
|
44 |
|
45 |
The below diagram shows how the cascaded speech to speech translation works.
|
46 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|