Spaces:
Build error
Build error
| #from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| """ | |
| tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") | |
| model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") | |
| """ | |
| import random | |
| import json | |
| import torch | |
| from model import NeuralNet | |
| from nltk_utils import bag_of_words, tokenize | |
| device = torch.device("cpu") | |
| with open('./intents.json', 'r') as json_data: | |
| intents = json.load(json_data) | |
| FILE = "./data.pth" | |
| data = torch.load(FILE) | |
| model_state = torch.load("chatmodel.pth", map_location=torch.device('cpu')) | |
| input_size = data["input_size"] | |
| hidden_size = data["hidden_size"] | |
| output_size = data["output_size"] | |
| all_words = data['all_words'] | |
| tags = data['tags'] | |
| #model_state = data["model_state"] | |
| model = NeuralNet(input_size, hidden_size, output_size).to(device) | |
| model.load_state_dict(model_state) | |
| model.eval() | |
| #test | |
| def predict(sentence, history=[]): | |
| history =[] | |
| """ | |
| # tokenize the new input sentence | |
| new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') | |
| # append the new user input tokens to the chat history | |
| bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
| # generate a response | |
| history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() | |
| # convert the tokens to text, and then split the responses into the right format | |
| response = tokenizer.decode(history[0]).split("<|endoftext|>") | |
| response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list | |
| """ | |
| sentence1 = tokenize(sentence) | |
| X = bag_of_words(sentence1, all_words) | |
| X = X.reshape(1, X.shape[0]) | |
| X = torch.from_numpy(X).to(device) | |
| output = model(X) | |
| _, predicted = torch.max(output, dim=1) | |
| tag = tags[predicted.item()] | |
| probs = torch.softmax(output, dim=1) | |
| prob = probs[0][predicted.item()] | |
| if prob.item() > 0.75: | |
| for intent in intents['intents']: | |
| if tag == intent["tag"]: | |
| reply = [random.choice(intent['responses'])] | |
| history.append((sentence, reply)) | |
| response = [(history[i], history[i+1]) for i in range(0, len(history)-1, 2)] | |
| return history, response | |
| import gradio as gr | |
| gr.Interface(fn=predict, | |
| theme="default", | |
| css=".footer {display:none !important}", | |
| inputs=["text", "state"], | |
| outputs=["chatbot", "state"]).launch() | |