|
import json |
|
import re |
|
import os |
|
import streamlit as st |
|
import requests |
|
import pandas as pd |
|
from io import StringIO |
|
import plotly.graph_objs as go |
|
from huggingface_hub import HfApi |
|
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError |
|
import streamlit.components.v1 as components |
|
from datetime import datetime |
|
|
|
from urllib.parse import quote |
|
from pathlib import Path |
|
import re |
|
import html |
|
from typing import Dict, Any |
|
|
|
BENCHMARKS = ["WebArena", "WorkArena-L1", "WorkArena-L2", "WorkArena-L3", "MiniWoB", "WebLINX", "AssistantBench"] |
|
|
|
def sanitize_agent_name(agent_name): |
|
|
|
if agent_name.startswith('.'): |
|
raise ValueError("Agent name cannot start with a dot") |
|
|
|
if not re.match("^[a-zA-Z0-9-_][a-zA-Z0-9-_.]*$", agent_name): |
|
raise ValueError("Invalid agent name format") |
|
return agent_name |
|
|
|
def safe_path_join(*parts): |
|
|
|
base = Path("results").resolve() |
|
try: |
|
path = base.joinpath(*parts).resolve() |
|
if not str(path).startswith(str(base)): |
|
raise ValueError("Path traversal detected") |
|
return path |
|
except Exception: |
|
raise ValueError("Invalid path") |
|
|
|
def sanitize_column_name(col: str) -> str: |
|
"""Sanitize column names for HTML display""" |
|
return html.escape(str(col)) |
|
|
|
def sanitize_cell_value(value: Any) -> str: |
|
if isinstance(value, (int, float)): |
|
return str(value) |
|
if isinstance(value, str) and '±' in value: |
|
score, std_err = value.split('±') |
|
return f'{score.strip()} <span style="font-size: smaller; color: var(--lighter-color);">±{std_err.strip()}</span>' |
|
return html.escape(str(value)) |
|
|
|
def create_html_table_main(df): |
|
col1, col2 = st.columns([2,6]) |
|
with col1: |
|
sort_column = st.selectbox("Sort by", df.columns.tolist(), index=df.columns.tolist().index("WebArena"), key="main_sort_column") |
|
with col2: |
|
sort_order = st.radio("Order", ["Ascending", "Descending"], index=1, horizontal=True, key="main_sort_order") |
|
|
|
def get_sort_value(row): |
|
if row == "-": |
|
return float('-inf') |
|
else: |
|
try: |
|
return float(row) |
|
except ValueError: |
|
return row |
|
|
|
|
|
if sort_order == "Ascending": |
|
df = df.sort_values(by=sort_column, key=lambda x: x.apply(get_sort_value)) |
|
else: |
|
df = df.sort_values(by=sort_column, ascending=False, key=lambda x: x.apply(get_sort_value)) |
|
html = ''' |
|
<style> |
|
table { |
|
width: 100%; |
|
border-collapse: collapse; |
|
} |
|
th, td { |
|
border: 1px solid #ddd; |
|
padding: 8px; |
|
text-align: center; |
|
} |
|
th { |
|
font-weight: bold; |
|
} |
|
.table-container { |
|
padding-bottom: 20px; |
|
} |
|
</style> |
|
''' |
|
html += '<div class="table-container">' |
|
html += '<table>' |
|
html += '<thead><tr>' |
|
for column in df.columns: |
|
html += f'<th>{sanitize_column_name(column)}</th>' |
|
html += '</tr></thead>' |
|
html += '<tbody>' |
|
for _, row in df.iterrows(): |
|
html += '<tr>' |
|
for col in df.columns: |
|
if col == "Agent": |
|
html += f'<td>{row[col]}</td>' |
|
else: |
|
html += f'<td>{sanitize_cell_value(row[col])}</td>' |
|
html += '</tr>' |
|
html += '</tbody></table>' |
|
html += '</div>' |
|
return html |
|
|
|
def create_html_table_benchmark(df, benchmark): |
|
col1, col2 = st.columns([2,6]) |
|
with col1: |
|
sort_column = st.selectbox("Sort by", df.columns.tolist(), index=df.columns.tolist().index("Score"), key=f"benchmark_sort_column_{benchmark}") |
|
with col2: |
|
sort_order = st.radio("Order", ["Ascending", "Descending"], index=1, horizontal=True, key=f"benchmark_sort_order_{benchmark}") |
|
|
|
def get_sort_value(row): |
|
if row == "-": |
|
return float('-inf') |
|
else: |
|
try: |
|
return float(row) |
|
except ValueError: |
|
return row |
|
|
|
|
|
if sort_order == "Ascending": |
|
df = df.sort_values(by=sort_column, key=lambda x: x.apply(get_sort_value)) |
|
else: |
|
df = df.sort_values(by=sort_column, ascending=False, key=lambda x: x.apply(get_sort_value)) |
|
|
|
html = ''' |
|
<style> |
|
table { |
|
width: 100%; |
|
border-collapse: collapse; |
|
} |
|
th, td { |
|
border: 1px solid #ddd; |
|
padding: 8px; |
|
text-align: center; |
|
} |
|
th { |
|
font-weight: bold; |
|
} |
|
.table-container { |
|
padding-bottom: 20px; |
|
} |
|
</style> |
|
''' |
|
html += '<div class="table-container">' |
|
html += '<table>' |
|
html += '<thead><tr>' |
|
for column in df.columns: |
|
if column == "Reproduced_all" or column == "std_err": |
|
continue |
|
html += f'<th>{sanitize_column_name(column)}</th>' |
|
html += '</tr></thead>' |
|
html += '<tbody>' |
|
for _, row in df.iterrows(): |
|
html += '<tr>' |
|
for column in df.columns: |
|
if column == "Reproduced": |
|
if row[column] == "-": |
|
html += f'<td>{sanitize_cell_value(row[column])}</td>' |
|
else: |
|
summary = sanitize_cell_value(row[column]) |
|
details = "<br>".join(map(sanitize_cell_value, row["Reproduced_all"])) |
|
html += f'<td><details><summary>{summary}</summary>{details}</details></td>' |
|
elif column == "Reproduced_all" or column == "std_err": |
|
continue |
|
elif column == "Score": |
|
score_with_std_err = f'{row[column]} ± {row["std_err"]}' |
|
html += f'<td>{sanitize_cell_value(score_with_std_err)}</td>' |
|
else: |
|
html += f'<td>{sanitize_cell_value(row[column])}</td>' |
|
html += '</tr>' |
|
html += '</tbody></table>' |
|
html += '</div>' |
|
return html |
|
|
|
def check_sanity(agent): |
|
try: |
|
safe_agent = sanitize_agent_name(agent) |
|
for benchmark in BENCHMARKS: |
|
file_path = safe_path_join(safe_agent, f"{benchmark.lower()}.json") |
|
if not file_path.is_file(): |
|
continue |
|
original_count = 0 |
|
with open(file_path) as f: |
|
results = json.load(f) |
|
for result in results: |
|
if not all(key in result for key in ["agent_name", "benchmark", "original_or_reproduced", "score", "std_err", "benchmark_specific", "benchmark_tuned", "followed_evaluation_protocol", "reproducible", "comments", "study_id", "date_time"]): |
|
return False |
|
if result["agent_name"] != agent: |
|
return False |
|
if result["benchmark"] != benchmark: |
|
return False |
|
if result["original_or_reproduced"] == "Original": |
|
original_count += 1 |
|
if original_count != 1: |
|
return False |
|
return True |
|
except ValueError: |
|
return False |
|
|
|
def main(): |
|
st.set_page_config(page_title="BrowserGym Leaderboard", layout="wide", initial_sidebar_state="expanded") |
|
st.markdown(""" |
|
<style> |
|
:root { |
|
--lighter-color: #888; /* Default for light theme */ |
|
} |
|
@media (prefers-color-scheme: dark) { |
|
:root { |
|
--lighter-color: #ccc; /* Default for dark theme */ |
|
} |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
st.markdown(""" |
|
<head> |
|
<meta http-equiv="Content-Security-Policy" |
|
content="default-src 'self' https://huggingface.co; |
|
script-src 'self' 'unsafe-inline'; |
|
style-src 'self' 'unsafe-inline'; |
|
img-src 'self' data: https:; |
|
frame-ancestors 'none';"> |
|
<meta http-equiv="X-Frame-Options" content="DENY"> |
|
<meta http-equiv="X-Content-Type-Options" content="nosniff"> |
|
<meta http-equiv="Referrer-Policy" content="strict-origin-when-cross-origin"> |
|
</head> |
|
""", unsafe_allow_html=True) |
|
|
|
all_agents = os.listdir("results") |
|
all_results = {} |
|
for agent in all_agents: |
|
if not check_sanity(agent): |
|
st.error(f"Results for {agent} are not in the correct format.") |
|
continue |
|
agent_results = [] |
|
for benchmark in BENCHMARKS: |
|
file_path = safe_path_join(agent, f"{benchmark.lower()}.json") |
|
if not file_path.is_file(): |
|
continue |
|
with open(file_path) as f: |
|
agent_results.extend(json.load(f)) |
|
all_results[agent] = agent_results |
|
|
|
st.title("🏆 BrowserGym Leaderboard") |
|
st.markdown("Leaderboard to evaluate LLMs, VLMs, and agents on web navigation tasks.") |
|
|
|
tabs = st.tabs(["🏆 Main Leaderboard",] + BENCHMARKS + ["📝 About"]) |
|
|
|
with tabs[0]: |
|
|
|
def get_leaderboard_dict(results): |
|
leaderboard_dict = [] |
|
for key, values in results.items(): |
|
result_dict = {"Agent": key} |
|
for benchmark in BENCHMARKS: |
|
if any(value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original" for value in values): |
|
result_dict[benchmark] = [value["score"] for value in values if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original"][0] |
|
else: |
|
result_dict[benchmark] = "-" |
|
leaderboard_dict.append(result_dict) |
|
return leaderboard_dict |
|
leaderboard_dict = get_leaderboard_dict(all_results) |
|
|
|
full_df = pd.DataFrame.from_dict(leaderboard_dict) |
|
|
|
df = pd.DataFrame(columns=full_df.columns) |
|
dfs_to_concat = [] |
|
dfs_to_concat.append(full_df) |
|
|
|
|
|
if dfs_to_concat: |
|
df = pd.concat(dfs_to_concat, ignore_index=True) |
|
|
|
for benchmark in BENCHMARKS: |
|
df[benchmark] = df[benchmark].apply(lambda x: f"{x:.2f}" if x != "-" else "-") |
|
df[benchmark] = df[benchmark].astype(str) |
|
|
|
search_query = st.text_input("Search agents", "", key="search_main") |
|
|
|
|
|
if search_query: |
|
df = df[df['Agent'].str.contains(search_query, case=False)] |
|
|
|
|
|
|
|
def make_hyperlink(agent_name): |
|
try: |
|
safe_name = sanitize_agent_name(agent_name) |
|
safe_url = f"https://huggingface.co/spaces/ServiceNow/browsergym-leaderboard/blob/main/results/{quote(safe_name)}/README.md" |
|
return f'<a href="{html.escape(safe_url)}" target="_blank">{html.escape(safe_name)}</a>' |
|
except ValueError: |
|
return "" |
|
|
|
df['Agent'] = df['Agent'].apply(make_hyperlink) |
|
html_table = create_html_table_main(df) |
|
st.markdown(html_table, unsafe_allow_html=True) |
|
|
|
if st.button("Export to CSV", key="export_main"): |
|
|
|
csv_data = df.to_csv(index=False) |
|
|
|
|
|
st.download_button( |
|
label="Download CSV", |
|
data=csv_data, |
|
file_name="leaderboard.csv", |
|
key="download-csv", |
|
help="Click to download the CSV file", |
|
) |
|
|
|
with tabs[-1]: |
|
st.markdown(''' |
|
# BrowserGym Leaderboard |
|
|
|
This leaderboard tracks performance of various agents on web navigation tasks. |
|
|
|
## How to Submit Results for New Agents |
|
|
|
### 1. Create Results Directory |
|
Create a new folder in the `results` directory with your agent's name: |
|
```bash |
|
results/ |
|
└── your-agent-name/ |
|
├── README.md |
|
├── webarena.json |
|
├── workarena-l1.json |
|
├── workarena++-l2.json |
|
├── workarena++-l3.json |
|
└── miniwob.json |
|
``` |
|
|
|
|
|
### 2. Add Agent Details |
|
|
|
Create a `README.md` in your agent's folder with the following details: |
|
|
|
#### Required Information |
|
- **Model Name**: Base model used (e.g., GPT-4, Claude-2) |
|
- **Model Architecture**: Architecture details and any modifications |
|
- **Input/Output Format**: How inputs are processed and outputs generated |
|
- **Training Details**: Training configuration if applicable |
|
- Dataset used |
|
- Number of training steps |
|
- Hardware used |
|
- Training time |
|
|
|
#### Optional Information |
|
- **Paper Link**: Link to published paper/preprint if available |
|
- **Code Repository**: Link to public code implementation |
|
- **Additional Notes**: Any special configurations or requirements |
|
- **License**: License information for your agent |
|
|
|
Make sure to organize the information in clear sections using Markdown. |
|
|
|
### 3. Add Benchmark Results |
|
|
|
Create separate JSON files for each benchmark following this format: |
|
|
|
```json |
|
[ |
|
{ |
|
"agent_name": "your-agent-name", |
|
"study_id": "unique-study-identifier-from-agentlab", |
|
"date_time": "YYYY-MM-DD HH:MM:SS", |
|
"benchmark": "WebArena", |
|
"score": 0.0, |
|
"std_err": 0.0, |
|
"benchmark_specific": "Yes/No", |
|
"benchmark_tuned": "Yes/No", |
|
"followed_evaluation_protocol": "Yes/No", |
|
"reproducible": "Yes/No", |
|
"comments": "Additional details", |
|
"original_or_reproduced": "Original" |
|
} |
|
] |
|
``` |
|
|
|
Please add all the benchmark files in separate json files named as follows: |
|
|
|
- `webarena.json` |
|
- `workarena-l1.json` |
|
- `workarena-l2.json` |
|
- `workarena-l3.json` |
|
- `miniwob.json` |
|
|
|
Each file must contain a JSON array with a single object following the format above. The benchmark field in each file must match the benchmark name exactly ([`WebArena`, `WorkArena-L1`, `WorkArena-L2`, `WorkArena-L3`, `MiniWoB`]) and benchmark_lowercase.json as the filename. |
|
|
|
### 4. Submit PR |
|
|
|
1. Open the community tab and press "New Pull Request" |
|
2. Give it a new title to the PR and follow the steps mentioned |
|
3. Publish the branch |
|
|
|
## How to Submit Reproducibility Results for Existing Agents |
|
|
|
Open the results file for the agent and benchmark you reproduced the results for. |
|
|
|
### 1. Add reproduced results |
|
|
|
|
|
Append the following entry in the json file. Ensure you set `original_or_reproduced` as `Reproduced`. |
|
|
|
```json |
|
[ |
|
{ |
|
"agent_name": "your-agent-name", |
|
"study_id": "unique-study-identifier-from-agentlab", |
|
"date_time": "YYYY-MM-DD HH:MM:SS", |
|
"benchmark": "WebArena", |
|
"score": 0.0, |
|
"std_err": 0.0, |
|
"benchmark_specific": "Yes/No", |
|
"benchmark_tuned": "Yes/No", |
|
"followed_evaluation_protocol": "Yes/No", |
|
"reproducible": "Yes/No", |
|
"comments": "Additional details", |
|
"original_or_reproduced": "Reproduced" |
|
} |
|
] |
|
``` |
|
|
|
### 2. Submit PR |
|
|
|
1. Open the community tab and press "New Pull Request" |
|
2. Give it a new title to the PR and follow the steps mentioned |
|
3. Publish the branch |
|
|
|
## License |
|
|
|
MIT |
|
''') |
|
for i, benchmark in enumerate(BENCHMARKS, start=1): |
|
with tabs[i]: |
|
def get_benchmark_dict(results, benchmark): |
|
benchmark_dict = [] |
|
for key, values in results.items(): |
|
result_dict = {"Agent": key} |
|
flag = 0 |
|
for value in values: |
|
if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original": |
|
result_dict["Score"] = value["score"] |
|
result_dict["std_err"] = value["std_err"] |
|
result_dict["Benchmark Specific"] = value["benchmark_specific"] |
|
result_dict["Benchmark Tuned"] = value["benchmark_tuned"] |
|
result_dict["Followed Evaluation Protocol"] = value["followed_evaluation_protocol"] |
|
result_dict["Reproducible"] = value["reproducible"] |
|
result_dict["Comments"] = value["comments"] |
|
result_dict["Study ID"] = value["study_id"] |
|
value["date_time"] = datetime.strptime(value["date_time"], "%Y-%m-%d %H:%M:%S").strftime("%B %d, %Y %I:%M %p") |
|
result_dict["Date"] = value["date_time"] |
|
result_dict["Reproduced"] = [] |
|
result_dict["Reproduced_all"] = [] |
|
flag = 1 |
|
if not flag: |
|
result_dict["Score"] = "-" |
|
result_dict["std_err"] = "-" |
|
result_dict["Benchmark Specific"] = "-" |
|
result_dict["Benchmark Tuned"] = "-" |
|
result_dict["Followed Evaluation Protocol"] = "-" |
|
result_dict["Reproducible"] = "-" |
|
result_dict["Comments"] = "-" |
|
result_dict["Study ID"] = "-" |
|
result_dict["Date"] = "-" |
|
result_dict["Reproduced"] = [] |
|
result_dict["Reproduced_all"] = [] |
|
if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Reproduced": |
|
result_dict["Reproduced"].append(value["score"]) |
|
value["date_time"] = datetime.strptime(value["date_time"], "%Y-%m-%d %H:%M:%S").strftime("%B %d, %Y %I:%M %p") |
|
result_dict["Reproduced_all"].append(", ".join([str(value["score"]), str(value["date_time"])])) |
|
if result_dict["Reproduced"]: |
|
result_dict["Reproduced"] = str(min(result_dict["Reproduced"])) + " - " + str(max(result_dict["Reproduced"])) |
|
else: |
|
result_dict["Reproduced"] = "-" |
|
benchmark_dict.append(result_dict) |
|
return benchmark_dict |
|
benchmark_dict = get_benchmark_dict(all_results, benchmark=benchmark) |
|
|
|
full_df = pd.DataFrame.from_dict(benchmark_dict) |
|
df_ = pd.DataFrame(columns=full_df.columns) |
|
dfs_to_concat = [] |
|
dfs_to_concat.append(full_df) |
|
|
|
|
|
if dfs_to_concat: |
|
df_ = pd.concat(dfs_to_concat, ignore_index=True) |
|
df_['Score'] = df_['Score'].apply(lambda x: f"{x:.2f}" if x != "-" else "-") |
|
df_['std_err'] = df_['std_err'].apply(lambda x: f"{x:.1f}" if x != "-" else "-") |
|
df_['Score'] = df_['Score'].astype(str) |
|
html_table = create_html_table_benchmark(df_, benchmark) |
|
st.markdown(html_table, unsafe_allow_html=True) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|