SergioMtz's picture
Create new file
3dedab3
raw
history blame contribute delete
No virus
7.53 kB
import tensorflow as tf
from tensorflow.keras.layers import Dense, Dropout, Embedding, LayerNormalization, Layer, Flatten
from tensorflow.keras.models import Model
import numpy as np
class PositionalEncoder(Layer):
def __init__(self, name = "Positional_Encoder"):
super(PositionalEncoder, self).__init__(name = name)
def get_angles(self, pos, i, d_model): # pos: (seq_length, 1) i: (1, d_model)
angles = 1 / np.power(10000., (2*(i//2)) / np.float32(d_model))
return pos * angles # (seq_length, d_model)
def call(self, inputs):
seq_length = inputs.shape.as_list()[-2]
d_model = inputs.shape.as_list()[-1]
angles = self.get_angles(np.arange(seq_length)[:, np.newaxis],
np.arange(d_model)[np.newaxis, :],
d_model)
angles[:, 0::2] = np.sin(angles[:, 0::2])
angles[:, 1::2] = np.cos(angles[:, 1::2])
pos_encoding = angles[np.newaxis, ...]
return inputs + tf.cast(pos_encoding, tf.float32)
class ScaledDotProductAttention(Layer):
def __init__(self, name = "Attention"):
super(ScaledDotProductAttention, self).__init__(name = name)
def call(self, queries, keys, values, mask):
product = tf.matmul(queries, keys, transpose_b = True)
keys_dim = tf.cast(tf.shape(keys)[-1], dtype = tf.float32)
scaled_product = product / tf.math.sqrt(keys_dim)
if mask is not None:
scaled_product += (mask * -1e9)
attention = tf.matmul(tf.nn.softmax(scaled_product, axis = -1), values)
return attention
class MultiHeadAttention(Layer):
def __init__(self, nb_proj, name = "Multi_Head_Attention"):
super(MultiHeadAttention, self).__init__(name = name)
self.nb_proj = nb_proj
def build(self, input_shape):
self.d_model = input_shape[-1]
assert self.d_model % self.nb_proj == 0
self.d_proj = self.d_model // self.nb_proj
self.Query_Dense = Dense(units = self.d_model)
self.Key_Dense = Dense(units = self.d_model)
self.Value_Dense = Dense(units = self.d_model)
self.Final_Dense = Dense(units = self.d_model)
self.Attention = ScaledDotProductAttention()
def split_proj(self, inputs, batch_size): # inputs: (batch_size, seq_length, d_model)
shape = (batch_size,
-1,
self.nb_proj,
self.d_proj)
splitted_inputs = tf.reshape(inputs, shape = shape) # (batch_size, seq_length, nb_proj, d_proj)
return tf.transpose(splitted_inputs, perm = [0, 2, 1, 3]) # (batch_size, nb_proj, seq_length, d_proj)
def call(self, queries, keys, values, mask):
batch_size = tf.shape(queries)[0]
queries = self.Query_Dense(queries)
keys = self.Key_Dense(keys)
values = self.Value_Dense(values)
queries = self.split_proj(queries, batch_size)
keys = self.split_proj(keys, batch_size)
values = self.split_proj(values, batch_size)
attention = self.Attention(queries, keys, values, mask)
attention = tf.transpose(attention, perm = [0, 2, 1, 3]) # (batch_size, seq_length, nb_proj, d_proj)
concat_attention = tf.reshape(attention, shape = (batch_size, -1, self.d_model))
outputs = self.Final_Dense(concat_attention)
return outputs
class EncoderLayer(Layer):
def __init__(self, FFN_units, nb_proj, dropout_rate, name = "Encoder_Layer"):
super(EncoderLayer, self).__init__(name = name)
self.FFN_units = FFN_units
self.nb_proj = nb_proj
self.dropout_rate = dropout_rate
def build(self, input_shape):
self.d_model = input_shape[-1]
self.multi_head_attention = MultiHeadAttention(self.nb_proj)
self.dropout_1 = Dropout(rate = self.dropout_rate)
self.norm_1 = LayerNormalization(epsilon = 1e-6)
self.Dense_1 = Dense(units = self.FFN_units, activation = "relu")
self.Dense_2 = Dense(units = self.d_model)
self.dropout_2 = Dropout(rate = self.dropout_rate)
self.norm_2 = LayerNormalization(epsilon = 1e-6)
def call(self, inputs, mask, training):
attention = self.multi_head_attention(inputs,
inputs,
inputs,
mask)
attention = self.dropout_1(attention, training)
attention = self.norm_1(attention + inputs)
outputs = self.Dense_1(attention)
outputs = self.Dense_2(outputs)
outputs = self.dropout_2(outputs, training)
outputs = self.norm_2(outputs + attention)
return outputs
class Encoder(Layer):
def __init__(self, nb_layers, FFN_units,
nb_proj, dropout_rate,
vocab_size, d_model,
name = "Encoder"):
super(Encoder, self).__init__(name = name)
self.nb_layers = nb_layers
self.d_model = d_model
self.embedding = Embedding(vocab_size, d_model)
self.pos_encoder = PositionalEncoder()
self.dropout = Dropout(rate = dropout_rate)
self.enc_layers = [EncoderLayer(FFN_units,
nb_proj,
dropout_rate)
for _ in range(nb_layers)]
def call(self, inputs, mask, training):
outputs = self.embedding(inputs)
outputs *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
outputs = self.pos_encoder(outputs)
outputs = self.dropout(outputs, training)
for i in range(self.nb_layers):
outputs = self.enc_layers[i](outputs, mask, training)
return outputs
class Transformer(Model):
def __init__(self,
vocab_size_enc,
vocab_size_dec,
d_model,
nb_layers,
FFN_units,
nb_proj,
dropout_rate,
name = "Transformer"):
super(Transformer, self).__init__(name = name)
self.encoder = Encoder(nb_layers,
FFN_units,
nb_proj,
dropout_rate,
vocab_size_enc,
d_model)
self.Flatten = Flatten()
self.Last_Dense = Dense(units = vocab_size_dec, activation = "sigmoid", name = "Linear_Output")
def create_padding_mask(self, seq): # seq: (batch_size, seq_length)
mask = tf.cast(tf.equal(seq, 0), dtype = tf.float32)
return mask[:, tf.newaxis, tf.newaxis, :]
def create_look_ahead_mask(self, seq):
seq_len = tf.shape(seq)[1]
look_ahead_mask = 1 - tf.linalg.band_part(tf.ones(shape = (seq_len, seq_len)), -1, 0)
return look_ahead_mask
def call(self, enc_inputs, training):
enc_mask = self.create_padding_mask(enc_inputs)
enc_outputs = self.encoder(enc_inputs, enc_mask, training)
enc_outputs = self.Flatten(enc_outputs)
outputs = self.Last_Dense(enc_outputs)
return outputs