|
|
import os |
|
|
import gradio as gr |
|
|
import requests |
|
|
import inspect |
|
|
import pandas as pd |
|
|
from src.agent import BasicAgent |
|
|
from datasets import load_dataset |
|
|
from huggingface_hub import snapshot_download |
|
|
from docx import Document |
|
|
|
|
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
agent = BasicAgent() |
|
|
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
|
""" |
|
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
|
and displays the results. |
|
|
""" |
|
|
|
|
|
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
|
|
if profile: |
|
|
username= f"{profile.username}" |
|
|
print(f"User logged in: {username}") |
|
|
else: |
|
|
print("User not logged in.") |
|
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
|
|
|
|
|
try: |
|
|
agent = BasicAgent() |
|
|
except Exception as e: |
|
|
print(f"Error instantiating agent: {e}") |
|
|
return f"Error initializing agent: {e}", None |
|
|
|
|
|
ACCESS_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
|
|
if not ACCESS_TOKEN: |
|
|
raise ValueError("HF_TOKEN environment variable is not set. Please set it in Space Secrets.") |
|
|
else: |
|
|
print("Key is good") |
|
|
data_dir = snapshot_download( |
|
|
repo_id="gaia-benchmark/GAIA", |
|
|
repo_type="dataset" |
|
|
) |
|
|
|
|
|
dataset = load_dataset(data_dir, "2023_level1", split="validation", cache_dir=data_dir) |
|
|
print("Dataset", dataset) |
|
|
print("Length is ", len(dataset)) |
|
|
print(type(dataset)) |
|
|
id_to_path = {} |
|
|
for ex in dataset: |
|
|
|
|
|
if ex.get("file_path") and ex.get("file_name"): |
|
|
full_path = os.path.join(data_dir, ex["file_path"]) |
|
|
|
|
|
|
|
|
if os.path.exists(full_path): |
|
|
id_to_path[ex["task_id"]] = full_path |
|
|
|
|
|
|
|
|
print(f"Mapped {len(id_to_path)} {id_to_path} question IDs to resource files.") |
|
|
|
|
|
|
|
|
results_log = [] |
|
|
answers_payload = [] |
|
|
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
|
|
if profile: |
|
|
username= f"{profile.username}" |
|
|
print(f"User logged in: {username}") |
|
|
else: |
|
|
print("User not logged in.") |
|
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
|
|
|
|
|
""" |
|
|
# Filter the dataset to include ONLY the target task ID |
|
|
# This uses the 'filter' method available on Hugging Face datasets. |
|
|
#subset = dataset.filter(lambda example: example['task_id'] in target_task_ids) |
|
|
specific_target_ids = [ |
|
|
'e1fc63a2-da7a-432f-be78-7c4a95598703', |
|
|
'a1e91b78-d3d8-4675-bb8d-62741b4b68a6', |
|
|
'4fc2f1ae-8625-45b5-ab34-ad4433bc21f8', |
|
|
'8e867cd7-cff9-4e6c-867a-ff5ddc2550be', |
|
|
'ec09fa32-d03f-4bf8-84b0-1f16922c3ae4', |
|
|
'2d83110e-a098-4ebb-9987-066c06fa42d0', |
|
|
'5cfb274c-0207-4aa7-9575-6ac0bd95d9b2', |
|
|
'27d5d136-8563-469e-92bf-fd103c28b57c', |
|
|
'dc28cf18-6431-458b-83ef-64b3ce566c10', |
|
|
'42576abe-0deb-4869-8c63-225c2d75a95a' |
|
|
] |
|
|
# --- END SPECIFIC TARGET IDS --- |
|
|
|
|
|
# 1. Get the list of Task IDs from the slice (indices 20 to 50) |
|
|
# We must fetch the task_id column data specifically. |
|
|
sliced_ids = dataset.select(range(20, 51))['task_id'] |
|
|
|
|
|
# 2. Combine the sliced IDs with the specific IDs into a single set for uniqueness |
|
|
# This ensures we don't accidentally duplicate tasks if some specific IDs are in the slice range. |
|
|
all_unique_target_ids = set(sliced_ids) |
|
|
all_unique_target_ids.update(specific_target_ids) |
|
|
all_unique_target_ids_list = list(all_unique_target_ids) |
|
|
|
|
|
print(f"Total unique tasks to run: {len(all_unique_target_ids_list)}") |
|
|
|
|
|
# 3. Filter the original dataset using the complete list of unique IDs |
|
|
# This replaces the need for complex concatenation. |
|
|
""" |
|
|
|
|
|
target_task_ids = [ |
|
|
"8e867cd7-cff9-4e6c-867a-ff5ddc2550be", |
|
|
"a1e91b78-d3d8-4675-bb8d-62741b4b68a6", |
|
|
"2d83110e-a098-4ebb-9987-066c06fa42d0", |
|
|
"cca530fc-4052-43b2-b130-b30968d8aa44", |
|
|
"4fc2f1ae-8625-45b5-ab34-ad4433bc21f8", |
|
|
"6f37996b-2ac7-44b0-8e68-6d28256631b4", |
|
|
"9d191bce-651d-4746-be2d-7ef8ecadb9c2", |
|
|
"cabe07ed-9eca-40ea-8ead-410ef5e83f91", |
|
|
"3cef3a44-215e-4aed-8e3b-b1e3f08063b7", |
|
|
"99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3", |
|
|
"305ac316-eef6-4446-960a-92d80d542f82", |
|
|
"f918266a-b3e0-4914-865d-4faa564f1aef", |
|
|
"3f57289b-8c60-48be-bd80-01f8099ca449", |
|
|
"1f975693-876d-457b-a649-393859e79bf3", |
|
|
"840bfca7-4f7b-481a-8794-c560c340185d", |
|
|
"bda648d7-d618-4883-88f4-3466eabd860e", |
|
|
"cf106601-ab4f-4af9-b045-5295fe67b37d", |
|
|
"a0c07678-e491-4bbc-8f0b-07405144218f", |
|
|
"7bd855d8-463d-4ed5-93ca-5fe35145f733", |
|
|
"5a0c1adf-205e-4841-a666-7c3ef95def9d" |
|
|
] |
|
|
subset = dataset.filter(lambda example: example['task_id'] in target_task_ids) |
|
|
subset = subset.to_list() |
|
|
print(subset) |
|
|
|
|
|
results_log = [] |
|
|
answers_payload = [] |
|
|
|
|
|
for item in subset: |
|
|
print(f"ITEMS {item}") |
|
|
task_id = item.get("task_id") |
|
|
print(f"Task ID is {task_id}") |
|
|
question_text = item.get("Question") |
|
|
print(f"question_text is {question_text}") |
|
|
file_name = item.get("file_name") |
|
|
print(f"File Name {file_name}") |
|
|
file_path = id_to_path.get(task_id, None) |
|
|
print(f"File path {file_path}") |
|
|
file_content = None |
|
|
if file_name and file_path: |
|
|
exists = os.path.exists(file_path) |
|
|
print("Checking file path") |
|
|
print(f"Task ID: {task_id}, File Name: {file_name}, Exists: {exists}, Calculated Path: {file_path}") |
|
|
print(f"Attempting to load file at: {file_path} (Exists: {exists})") |
|
|
|
|
|
if exists: |
|
|
|
|
|
if file_name.endswith((".txt", ".py", ".csv", ".json")): |
|
|
try: |
|
|
with open(file_path, "r", encoding="utf-8") as f: |
|
|
file_content = f.read() |
|
|
print(f"File Content is {file_content}, {file_path}") |
|
|
except Exception as e: |
|
|
print(f"Error reading text file {file_path}: {e}") |
|
|
file_content = None |
|
|
elif file_name.endswith(".docx"): |
|
|
try: |
|
|
doc = Document(file_path) |
|
|
file_content = "\n".join([p.text for p in doc.paragraphs]) |
|
|
print(f"Docx content loaded, {file_path}") |
|
|
except Exception as e: |
|
|
print(f"Error reading docx file {file_path}: {e}") |
|
|
file_content = None |
|
|
|
|
|
|
|
|
else: |
|
|
try: |
|
|
with open(file_path, "rb") as f: |
|
|
file_content = f.read() |
|
|
print(f"Binary file loaded, {file_path}") |
|
|
except Exception as e: |
|
|
print(f"Error reading binary file {file_path}: {e}") |
|
|
file_content = None |
|
|
|
|
|
|
|
|
if not task_id or question_text is None: |
|
|
print(f"Skipping item with missing task_id or question: {item}") |
|
|
continue |
|
|
try: |
|
|
if file_content: |
|
|
answer = agent(question_text, file_content=file_content, file_path=file_path) |
|
|
else: |
|
|
answer = agent(question_text) |
|
|
|
|
|
if not answer: |
|
|
answer = "I am unable to answer" |
|
|
answers_payload.append({"task_id": task_id, "submitted_answer": answer}) |
|
|
results_log.append({"Task ID": task_id, "Question": question_text, "Answer": answer}) |
|
|
except Exception as e: |
|
|
print(f"Error running agent on task {task_id}: {e}") |
|
|
results_log.append({"Task ID": task_id, "Question": question_text, "Answer": f"AGENT ERROR: {e}"}) |
|
|
|
|
|
if not answers_payload: |
|
|
print("Agent did not produce any answers to submit.") |
|
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
|
print(agent_code) |
|
|
|
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
|
print(status_update) |
|
|
|
|
|
submit_url = f"{DEFAULT_API_URL}/submit" |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
|
try: |
|
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
|
response.raise_for_status() |
|
|
result_data = response.json() |
|
|
final_status = ( |
|
|
f"Submission Successful!\n" |
|
|
f"User: {result_data.get('username')}\n" |
|
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
|
) |
|
|
print("Submission successful!") |
|
|
results_df = pd.DataFrame(results_log) |
|
|
return final_status, results_df |
|
|
except requests.exceptions.HTTPError as e: |
|
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
|
try: |
|
|
error_json = e.response.json() |
|
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
|
except requests.exceptions.JSONDecodeError: |
|
|
error_detail += f" Response: {e.response.text[:500]}" |
|
|
status_message = f"Submission Failed: {error_detail}" |
|
|
print(status_message) |
|
|
results_df = pd.DataFrame(results_log) |
|
|
return status_message, results_df |
|
|
except requests.exceptions.Timeout: |
|
|
status_message = "Submission Failed: The request timed out." |
|
|
print(status_message) |
|
|
results_df = pd.DataFrame(results_log) |
|
|
return status_message, results_df |
|
|
except requests.exceptions.RequestException as e: |
|
|
status_message = f"Submission Failed: Network error - {e}" |
|
|
print(status_message) |
|
|
results_df = pd.DataFrame(results_log) |
|
|
return status_message, results_df |
|
|
except Exception as e: |
|
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
|
print(status_message) |
|
|
results_df = pd.DataFrame(results_log) |
|
|
return status_message, results_df |
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
|
gr.Markdown( |
|
|
""" |
|
|
**Instructions:** |
|
|
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
|
|
--- |
|
|
**Disclaimers:** |
|
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
|
""" |
|
|
) |
|
|
|
|
|
gr.LoginButton() |
|
|
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
|
|
run_button.click( |
|
|
fn=run_and_submit_all, |
|
|
outputs=[status_output, results_table] |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
|
print(space_host_startup) |
|
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
print(space_id_startup) |
|
|
|
|
|
if space_host_startup: |
|
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
|
else: |
|
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
|
|
if space_id_startup: |
|
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
|
else: |
|
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
|
demo.launch(debug=True, share=False) |