Spaces:
Running
Running
import torch.nn as nn | |
import torch.nn.functional as F | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, stride=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * 4) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = F.relu(self.bn1(self.conv1(x)), inplace=True) | |
out = F.relu(self.bn2(self.conv2(out)), inplace=True) | |
out = self.bn3(self.conv3(out)) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = F.relu(out, inplace=True) | |
return out | |
class ResNet(nn.Module): | |
""" Resnet """ | |
def __init__(self, architecture): | |
super(ResNet, self).__init__() | |
assert architecture in ["resnet50", "resnet101"] | |
self.inplanes = 64 | |
self.layers = [3, 4, {"resnet50": 6, "resnet101": 23}[architecture], 3] | |
self.block = Bottleneck | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
self.bn1 = nn.BatchNorm2d(64, eps=1e-5, momentum=0.01, affine=True) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2) | |
self.layer1 = self.make_layer(self.block, 64, self.layers[0]) | |
self.layer2 = self.make_layer(self.block, 128, self.layers[1], stride=2) | |
self.layer3 = self.make_layer(self.block, 256, self.layers[2], stride=2) | |
self.layer4 = self.make_layer( | |
self.block, 512, self.layers[3], stride=2) | |
def forward(self, x): | |
x = self.maxpool(self.relu(self.bn1(self.conv1(x)))) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
return x | |
def stages(self): | |
return [self.layer1, self.layer2, self.layer3, self.layer4] | |
def make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |