import torch.nn as nn import torch.nn.functional as F class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, stride=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = F.relu(self.bn1(self.conv1(x)), inplace=True) out = F.relu(self.bn2(self.conv2(out)), inplace=True) out = self.bn3(self.conv3(out)) if self.downsample is not None: residual = self.downsample(x) out += residual out = F.relu(out, inplace=True) return out class ResNet(nn.Module): """ Resnet """ def __init__(self, architecture): super(ResNet, self).__init__() assert architecture in ["resnet50", "resnet101"] self.inplanes = 64 self.layers = [3, 4, {"resnet50": 6, "resnet101": 23}[architecture], 3] self.block = Bottleneck self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64, eps=1e-5, momentum=0.01, affine=True) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2) self.layer1 = self.make_layer(self.block, 64, self.layers[0]) self.layer2 = self.make_layer(self.block, 128, self.layers[1], stride=2) self.layer3 = self.make_layer(self.block, 256, self.layers[2], stride=2) self.layer4 = self.make_layer( self.block, 512, self.layers[3], stride=2) def forward(self, x): x = self.maxpool(self.relu(self.bn1(self.conv1(x)))) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def stages(self): return [self.layer1, self.layer2, self.layer3, self.layer4] def make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers)