Spaces:
Sleeping
Sleeping
#Importing Necessary libraries | |
import streamlit as st | |
import numpy as np | |
from PIL import Image | |
from tensorflow.keras.datasets import imdb | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing.text import Tokenizer | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
from tensorflow.keras.applications.inception_v3 import preprocess_input | |
import tensorflow as tf | |
import pickle | |
from tensorflow.keras.preprocessing import sequence | |
# Load the tokenizer using pickle | |
with open(r'tokenizer_rnn.pkl', 'rb') as handle: | |
tokenizer_rnn = pickle.load(handle) | |
with open(r'tokenizer_dnn.pkl', 'rb') as handle: | |
tokenizer_dnn = pickle.load(handle) | |
with open(r'tokenizer_per.pkl', 'rb') as handle: | |
tokenizer_per = pickle.load(handle) | |
with open(r'tokenizer_backpropagation.pkl', 'rb') as handle: | |
tokenizer_back = pickle.load(handle) | |
# Load saved models | |
image_model = load_model('tumor_detection_model.h5') | |
#dnn_model = tf.keras.models.load_model('dnn_model_imdb.h5') | |
loaded_model = tf.keras.models.load_model('spam_model.h5') | |
lstm_model = tf.keras.models.load_model('lstm_model.h5') | |
dnn_model = tf.keras.models.load_model('spam_dnn_model.h5') | |
with open('spam_perceptron_model.pkl', 'rb') as model_file: | |
loaded_perceptron = pickle.load(model_file) | |
with open('spam_backpropagation_model.pkl', 'rb') as model_file: | |
lbackprop_model = pickle.load(model_file) | |
# Streamlit app | |
st.title("Classification App") | |
# Sidebar | |
task = st.sidebar.selectbox("Select Task", ["Tumor Detection", "Sentiment Classification"]) | |
def preprocess_text(text): | |
tokenizer = Tokenizer() | |
tokenizer.fit_on_texts([text]) | |
sequences = tokenizer.texts_to_sequences([text]) | |
preprocessed_text = pad_sequences(sequences, maxlen=4) | |
return preprocessed_text | |
def predict_dnn(text_input): | |
encoded_input = tokenizer_dnn.texts_to_sequences([text_input]) | |
padded_input = pad_sequences(encoded_input, maxlen=200, padding='post') | |
prediction = dnn_model.predict(padded_input) | |
prediction_value = prediction[0] | |
# Adjust the threshold based on your model and problem | |
if prediction_value > 0.5: | |
return "Spam" | |
else: | |
return "Ham" | |
def predict_lstm(text_input): | |
words = 5000 | |
max_review_length=500 | |
word_index = imdb.get_word_index() | |
text_input = text_input.lower().split() | |
text_input = [word_index[word] if word in word_index and word_index[word] < words else 0 for word in text_input] | |
text_input = sequence.pad_sequences([text_input], maxlen=max_review_length) | |
prediction = lstm_model.predict(text_input) | |
print("Raw Prediction:", prediction) | |
if prediction > 0.5: | |
return "Positive" | |
else: | |
return "Negative" | |
def predict_rnn(input_text): | |
encoded_input = tokenizer_rnn.texts_to_sequences([input_text]) | |
padded_input = tf.keras.preprocessing.sequence.pad_sequences(encoded_input, maxlen=10, padding='post') | |
prediction = loaded_model.predict(padded_input) | |
if prediction > 0.5: | |
return "Spam" | |
else: | |
return "Ham" | |
def predict_perceptron(text_input): | |
encoded_input = tokenizer_per.texts_to_sequences([text_input]) | |
padded_input = pad_sequences(encoded_input, maxlen=200, padding='post') | |
prediction = loaded_perceptron.predict(padded_input) | |
prediction_value = prediction[0] | |
# Adjust the threshold based on your model and problem | |
if prediction_value > 0.5: | |
return "Spam" | |
else: | |
return "Ham" | |
def predict_backpropogation(text_input): | |
encoded_input = tokenizer_back.texts_to_sequences([text_input]) | |
padded_input = pad_sequences(encoded_input, maxlen=200, padding='post') | |
prediction = lbackprop_model.predict(padded_input) | |
prediction_value = prediction[0] | |
# Adjust the threshold based on your model and problem | |
if prediction_value > 0.5: | |
return "Spam" | |
else: | |
return "Ham" | |
# make a prediction for CNN | |
def preprocess_image(image): | |
image = image.resize((299, 299)) | |
image_array = np.array(image) | |
preprocessed_image = preprocess_input(image_array) | |
return preprocessed_image | |
def make_prediction_cnn(image, image_model): | |
img = image.resize((128, 128)) | |
img_array = np.array(img) | |
img_array = img_array.reshape((1, img_array.shape[0], img_array.shape[1], img_array.shape[2])) | |
preprocessed_image = preprocess_input(img_array) | |
prediction = image_model.predict(preprocessed_image) | |
if prediction > 0.5: | |
st.write("Tumor Detected") | |
else: | |
st.write("No Tumor") | |
if task == "Sentiment Classification": | |
st.subheader("Choose Model") | |
model_choice = st.radio("Select Model", ["DNN (Email)", "RNN (Email)", "Perceptron (Email)", "Backpropagation (Email)","LSTM (Movie_Review)"]) | |
st.subheader("Text Input") | |
text_input = st.text_area("Enter Text") | |
if st.button("Predict"): | |
# Preprocess the text | |
preprocessed_text = preprocess_text(text_input) | |
if model_choice == "DNN (Email)": | |
if text_input: | |
prediction_result = predict_dnn(text_input) | |
st.write(f"The message is classified as: {prediction_result}") | |
elif model_choice == "RNN (Email)": | |
if text_input: | |
prediction_result = predict_rnn(text_input) | |
st.write(f"The message is classified as: {prediction_result}") | |
else: | |
st.write("Please enter some text for prediction") | |
elif model_choice == "LSTM (Movie_Review)": | |
if text_input: | |
prediction_result = predict_lstm(text_input) | |
st.write(f"The sentiment is: {prediction_result}") | |
else: | |
st.write("Please enter some text for prediction") | |
elif model_choice == "Perceptron (Email)": | |
if text_input: | |
prediction_result = predict_perceptron(text_input) | |
st.write(f"The message is classified as: {prediction_result}") | |
else: | |
st.write("Please enter some text for prediction") | |
elif model_choice == "Backpropagation (Email)": | |
if text_input: | |
prediction_result = predict_backpropogation(text_input) | |
st.write(f"The message is classified as: {prediction_result}") | |
else: | |
st.write("Please enter some text for prediction") | |
else: | |
st.subheader("Choose Model") | |
model_choice = st.radio("Select Model", ["CNN"]) | |
st.subheader("Image Input") | |
image_input = st.file_uploader("Choose an image...", type="jpg") | |
if image_input is not None: | |
image = Image.open(image_input) | |
st.image(image, caption="Uploaded Image.", use_column_width=True) | |
# Preprocess the image | |
preprocessed_image = preprocess_image(image) | |
if st.button("Predict"): | |
if model_choice == "CNN": | |
make_prediction_cnn(image, image_model) | |