Hackathon / app.py
SameerArz's picture
Update app.py
ac76f56 verified
import gradio as gr
from groq import Groq
import os
import threading
import tempfile
import logging
from moviepy.editor import TextClip, concatenate_videoclips, AudioFileClip, ColorClip
# Set up logging for debugging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Disable proxies to avoid previous 'proxies' error
os.environ["HTTP_PROXY"] = ""
os.environ["HTTPS_PROXY"] = ""
# Initialize Groq client with error handling
try:
client = Groq(api_key=os.environ.get("GROQ_API_KEY", ""))
logger.info("Groq client initialized successfully with API key: %s", "set" if os.environ.get("GROQ_API_KEY") else "not set")
except Exception as e:
logger.error("Failed to initialize Groq client: %s", str(e))
raise
# Load Text-to-Image Models with error handling
try:
model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", fallback=None)
logger.info("Model 1 loaded successfully: SD3.5-Turbo-Realism-2.0-LoRA")
except Exception as e:
logger.error("Failed to load Model 1: %s", str(e))
model1 = None # Fallback to None if loading fails
try:
model2 = gr.load("models/Purz/face-projection", fallback=None)
logger.info("Model 2 loaded successfully: face-projection")
except Exception as e:
logger.error("Failed to load Model 2: %s", str(e))
model2 = None # Fallback to None if loading fails
# Stop event for threading (image generation)
stop_event = threading.Event()
# Function to generate tutor output (lesson, question, feedback)
def generate_tutor_output(subject, difficulty, student_input):
if not all([subject, difficulty, student_input]):
return '{"lesson": "Please fill in all fields.", "question": "", "feedback": ""}'
prompt = f"""
You are an expert tutor in {subject} at the {difficulty} level.
The student has provided the following input: "{student_input}"
Please generate:
1. A brief, engaging lesson on the topic (2-3 paragraphs)
2. A thought-provoking question to check understanding
3. Constructive feedback on the student's input
Format your response as a JSON object with keys: "lesson", "question", "feedback"
"""
try:
completion = client.chat.completions.create(
messages=[{
"role": "system",
"content": f"You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way and giving math examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students."
}, {
"role": "user",
"content": prompt,
}],
model="mixtral-8x7b-32768",
max_tokens=1000,
)
return completion.choices[0].message.content
except Exception as e:
logger.error("Error in generate_tutor_output: %s", str(e))
return '{"lesson": "Error generating lesson.", "question": "", "feedback": ""}'
# Function to generate images based on model selection
def generate_images(text, selected_model):
stop_event.clear()
if not text:
return ["No text provided."] * 3
if selected_model == "Model 1 (Turbo Realism)":
model = model1
elif selected_model == "Model 2 (Face Projection)":
model = model2
else:
return ["Invalid model selection."] * 3
if model is None:
return ["Selected model is not available."] * 3
results = []
for i in range(3):
if stop_event.is_set():
return ["Image generation stopped by user."] * 3
modified_text = f"{text} variation {i+1}"
try:
result = model(modified_text)
results.append(result)
except Exception as e:
logger.error("Error generating image %d: %s", i+1, str(e))
results.append(None)
return results
# Function to generate text-to-video with voice
def generate_text_to_video(text):
if not text:
return "No text provided for video generation."
try:
narration_prompt = f"Convert this text to a natural-sounding narration: {text}"
narration_response = client.chat.completions.create(
messages=[{
"role": "system",
"content": "You are an AI voice generator that produces natural, human-like speech."
}, {
"role": "user",
"content": narration_prompt,
}],
model="mixtral-8x7b-32768",
max_tokens=500,
)
narration_text = narration_response.choices[0].message.content
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_audio:
audio_duration = len(narration_text.split()) / 2 # Rough estimate: 2 words/sec
audio = ColorClip(size=(100, 100), color=(0, 0, 0), duration=audio_duration).set_audio(None)
audio.write_audiofile(temp_audio.name, fps=44100, logger=None)
clips = []
words = narration_text.split()
chunk_size = 10
for i in range(0, len(words), chunk_size):
chunk = " ".join(words[i:i + chunk_size])
clip = TextClip(chunk, fontsize=50, color='white', size=(1280, 720), bg_color='black')
clip = clip.set_duration(audio_duration / (len(words) / chunk_size))
clips.append(clip)
final_video = concatenate_videoclips(clips)
audio_clip = AudioFileClip(temp_audio.name)
final_video = final_video.set_audio(audio_clip)
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_video:
final_video.write_videofile(temp_video.name, fps=24, logger=None)
video_path = temp_video.name
os.unlink(temp_audio.name)
return video_path
except Exception as e:
logger.error("Error generating video: %s", str(e))
return f"Error generating video: {str(e)}"
# Set up the Gradio interface
with gr.Blocks(title="AI Tutor with Visuals") as demo:
gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images")
with gr.Row():
with gr.Column(scale=2):
subject = gr.Dropdown(
["Math", "Science", "History", "Literature", "Code", "AI"],
label="Subject",
info="Choose the subject of your lesson",
value="Math"
)
difficulty = gr.Radio(
["Beginner", "Intermediate", "Advanced"],
label="Difficulty Level",
info="Select your proficiency level",
value="Beginner"
)
student_input = gr.Textbox(
placeholder="Type your query here...",
label="Your Input",
info="Enter the topic you want to learn"
)
submit_button_text = gr.Button("Generate Lesson & Question", variant="primary")
with gr.Column(scale=3):
lesson_output = gr.Markdown(label="Lesson")
question_output = gr.Markdown(label="Comprehension Question")
feedback_output = gr.Markdown(label="Feedback")
with gr.Row():
with gr.Column(scale=2):
model_selector = gr.Radio(
["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"],
label="Select Image Generation Model",
value="Model 1 (Turbo Realism)"
)
submit_button_visual = gr.Button("Generate Visuals", variant="primary")
submit_button_video = gr.Button("Generate Video with Voice", variant="primary")
with gr.Column(scale=3):
output1 = gr.Image(label="Generated Image 1")
output2 = gr.Image(label="Generated Image 2")
output3 = gr.Image(label="Generated Image 3")
video_output = gr.Video(label="Generated Video with Voice")
gr.Markdown("""
### How to Use
1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question'.
2. **Visual Section**: Select the model, then click 'Generate Visuals' for 3 images or 'Generate Video with Voice' for a narrated video.
3. Review the AI-generated content to enhance your learning experience!
""")
def process_output_text(subject, difficulty, student_input):
try:
tutor_output = generate_tutor_output(subject, difficulty, student_input)
parsed = eval(tutor_output) # Use json.loads in production
return parsed["lesson"], parsed["question"], parsed["feedback"]
except Exception as e:
logger.error("Error parsing tutor output: %s", str(e))
return "Error parsing output", "No question available", "No feedback available"
def process_output_visual(text, selected_model):
try:
images = generate_images(text, selected_model)
return images[0], images[1], images[2]
except Exception as e:
logger.error("Error in process_output_visual: %s", str(e))
return None, None, None
def process_output_video(text):
try:
video_path = generate_text_to_video(text)
return video_path
except Exception as e:
logger.error("Error in process_output_video: %s", str(e))
return None
submit_button_text.click(
fn=process_output_text,
inputs=[subject, difficulty, student_input],
outputs=[lesson_output, question_output, feedback_output]
)
submit_button_visual.click(
fn=process_output_visual,
inputs=[student_input, model_selector],
outputs=[output1, output2, output3]
)
submit_button_video.click(
fn=process_output_video,
inputs=[student_input],
outputs=[video_output]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)