import gradio as gr from groq import Groq import os import threading import tempfile import logging from moviepy.editor import TextClip, concatenate_videoclips, AudioFileClip, ColorClip # Set up logging for debugging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Disable proxies to avoid previous 'proxies' error os.environ["HTTP_PROXY"] = "" os.environ["HTTPS_PROXY"] = "" # Initialize Groq client with error handling try: client = Groq(api_key=os.environ.get("GROQ_API_KEY", "")) logger.info("Groq client initialized successfully with API key: %s", "set" if os.environ.get("GROQ_API_KEY") else "not set") except Exception as e: logger.error("Failed to initialize Groq client: %s", str(e)) raise # Load Text-to-Image Models with error handling try: model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", fallback=None) logger.info("Model 1 loaded successfully: SD3.5-Turbo-Realism-2.0-LoRA") except Exception as e: logger.error("Failed to load Model 1: %s", str(e)) model1 = None # Fallback to None if loading fails try: model2 = gr.load("models/Purz/face-projection", fallback=None) logger.info("Model 2 loaded successfully: face-projection") except Exception as e: logger.error("Failed to load Model 2: %s", str(e)) model2 = None # Fallback to None if loading fails # Stop event for threading (image generation) stop_event = threading.Event() # Function to generate tutor output (lesson, question, feedback) def generate_tutor_output(subject, difficulty, student_input): if not all([subject, difficulty, student_input]): return '{"lesson": "Please fill in all fields.", "question": "", "feedback": ""}' prompt = f""" You are an expert tutor in {subject} at the {difficulty} level. The student has provided the following input: "{student_input}" Please generate: 1. A brief, engaging lesson on the topic (2-3 paragraphs) 2. A thought-provoking question to check understanding 3. Constructive feedback on the student's input Format your response as a JSON object with keys: "lesson", "question", "feedback" """ try: completion = client.chat.completions.create( messages=[{ "role": "system", "content": f"You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way and giving math examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students." }, { "role": "user", "content": prompt, }], model="mixtral-8x7b-32768", max_tokens=1000, ) return completion.choices[0].message.content except Exception as e: logger.error("Error in generate_tutor_output: %s", str(e)) return '{"lesson": "Error generating lesson.", "question": "", "feedback": ""}' # Function to generate images based on model selection def generate_images(text, selected_model): stop_event.clear() if not text: return ["No text provided."] * 3 if selected_model == "Model 1 (Turbo Realism)": model = model1 elif selected_model == "Model 2 (Face Projection)": model = model2 else: return ["Invalid model selection."] * 3 if model is None: return ["Selected model is not available."] * 3 results = [] for i in range(3): if stop_event.is_set(): return ["Image generation stopped by user."] * 3 modified_text = f"{text} variation {i+1}" try: result = model(modified_text) results.append(result) except Exception as e: logger.error("Error generating image %d: %s", i+1, str(e)) results.append(None) return results # Function to generate text-to-video with voice def generate_text_to_video(text): if not text: return "No text provided for video generation." try: narration_prompt = f"Convert this text to a natural-sounding narration: {text}" narration_response = client.chat.completions.create( messages=[{ "role": "system", "content": "You are an AI voice generator that produces natural, human-like speech." }, { "role": "user", "content": narration_prompt, }], model="mixtral-8x7b-32768", max_tokens=500, ) narration_text = narration_response.choices[0].message.content with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_audio: audio_duration = len(narration_text.split()) / 2 # Rough estimate: 2 words/sec audio = ColorClip(size=(100, 100), color=(0, 0, 0), duration=audio_duration).set_audio(None) audio.write_audiofile(temp_audio.name, fps=44100, logger=None) clips = [] words = narration_text.split() chunk_size = 10 for i in range(0, len(words), chunk_size): chunk = " ".join(words[i:i + chunk_size]) clip = TextClip(chunk, fontsize=50, color='white', size=(1280, 720), bg_color='black') clip = clip.set_duration(audio_duration / (len(words) / chunk_size)) clips.append(clip) final_video = concatenate_videoclips(clips) audio_clip = AudioFileClip(temp_audio.name) final_video = final_video.set_audio(audio_clip) with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_video: final_video.write_videofile(temp_video.name, fps=24, logger=None) video_path = temp_video.name os.unlink(temp_audio.name) return video_path except Exception as e: logger.error("Error generating video: %s", str(e)) return f"Error generating video: {str(e)}" # Set up the Gradio interface with gr.Blocks(title="AI Tutor with Visuals") as demo: gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images") with gr.Row(): with gr.Column(scale=2): subject = gr.Dropdown( ["Math", "Science", "History", "Literature", "Code", "AI"], label="Subject", info="Choose the subject of your lesson", value="Math" ) difficulty = gr.Radio( ["Beginner", "Intermediate", "Advanced"], label="Difficulty Level", info="Select your proficiency level", value="Beginner" ) student_input = gr.Textbox( placeholder="Type your query here...", label="Your Input", info="Enter the topic you want to learn" ) submit_button_text = gr.Button("Generate Lesson & Question", variant="primary") with gr.Column(scale=3): lesson_output = gr.Markdown(label="Lesson") question_output = gr.Markdown(label="Comprehension Question") feedback_output = gr.Markdown(label="Feedback") with gr.Row(): with gr.Column(scale=2): model_selector = gr.Radio( ["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"], label="Select Image Generation Model", value="Model 1 (Turbo Realism)" ) submit_button_visual = gr.Button("Generate Visuals", variant="primary") submit_button_video = gr.Button("Generate Video with Voice", variant="primary") with gr.Column(scale=3): output1 = gr.Image(label="Generated Image 1") output2 = gr.Image(label="Generated Image 2") output3 = gr.Image(label="Generated Image 3") video_output = gr.Video(label="Generated Video with Voice") gr.Markdown(""" ### How to Use 1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question'. 2. **Visual Section**: Select the model, then click 'Generate Visuals' for 3 images or 'Generate Video with Voice' for a narrated video. 3. Review the AI-generated content to enhance your learning experience! """) def process_output_text(subject, difficulty, student_input): try: tutor_output = generate_tutor_output(subject, difficulty, student_input) parsed = eval(tutor_output) # Use json.loads in production return parsed["lesson"], parsed["question"], parsed["feedback"] except Exception as e: logger.error("Error parsing tutor output: %s", str(e)) return "Error parsing output", "No question available", "No feedback available" def process_output_visual(text, selected_model): try: images = generate_images(text, selected_model) return images[0], images[1], images[2] except Exception as e: logger.error("Error in process_output_visual: %s", str(e)) return None, None, None def process_output_video(text): try: video_path = generate_text_to_video(text) return video_path except Exception as e: logger.error("Error in process_output_video: %s", str(e)) return None submit_button_text.click( fn=process_output_text, inputs=[subject, difficulty, student_input], outputs=[lesson_output, question_output, feedback_output] ) submit_button_visual.click( fn=process_output_visual, inputs=[student_input, model_selector], outputs=[output1, output2, output3] ) submit_button_video.click( fn=process_output_video, inputs=[student_input], outputs=[video_output] ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)