Spaces:
Sleeping
Sleeping
import streamlit as st | |
from QnA import Q_A | |
import re,time | |
from QnA import get_hugging_face_model , summarize ,get_groq_model | |
def summarize_data(documents,api_key): | |
if api_key.startswith('gsk'): | |
llm = get_groq_model(api_key) | |
else: | |
llm= get_hugging_face_model(api_key=api_key) | |
summary = summarize(documents,llm) | |
return summary | |
def QA_Bot(vectorstore,API_KEY,documents): | |
summary_response = None | |
st.title("Q&A Bot") | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
summary_response = summarize_data(documents,API_KEY) | |
print(summary_response) | |
# React to user input | |
if prompt := st.chat_input("What is up?"): | |
# Display user message in chat message container | |
st.chat_message("user").markdown(prompt) | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
ai_response = Q_A(vectorstore,prompt,API_KEY) | |
response = f"Echo: {ai_response}" | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
message_placeholder = st.empty() | |
full_response = "" | |
for chunk in re.split(r'(\s+)', response): | |
full_response += chunk + " " | |
time.sleep(0.01) | |
# Add a blinking cursor to simulate typing | |
message_placeholder.markdown(full_response + "▌") | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": full_response}) | |