Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from QnA import Q_A | |
| import re,time | |
| from QnA import get_hugging_face_model , summarize ,get_groq_model | |
| def summarize_data(documents,api_key): | |
| if api_key.startswith('gsk'): | |
| llm = get_groq_model(api_key) | |
| else: | |
| llm= get_hugging_face_model(api_key=api_key) | |
| summary = summarize(documents,llm) | |
| return summary | |
| def QA_Bot(vectorstore,API_KEY,documents): | |
| summary_response = None | |
| st.title("Q&A Bot") | |
| # Initialize chat history | |
| if "messages" not in st.session_state: | |
| st.session_state.messages = [] | |
| # Display chat messages from history on app rerun | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"]): | |
| st.markdown(message["content"]) | |
| summary_response = summarize_data(documents,API_KEY) | |
| print(summary_response) | |
| # React to user input | |
| if prompt := st.chat_input("What is up?"): | |
| # Display user message in chat message container | |
| st.chat_message("user").markdown(prompt) | |
| # Add user message to chat history | |
| st.session_state.messages.append({"role": "user", "content": prompt}) | |
| ai_response = Q_A(vectorstore,prompt,API_KEY) | |
| response = f"Echo: {ai_response}" | |
| # Display assistant response in chat message container | |
| with st.chat_message("assistant"): | |
| message_placeholder = st.empty() | |
| full_response = "" | |
| for chunk in re.split(r'(\s+)', response): | |
| full_response += chunk + " " | |
| time.sleep(0.01) | |
| # Add a blinking cursor to simulate typing | |
| message_placeholder.markdown(full_response + "▌") | |
| # Add assistant response to chat history | |
| st.session_state.messages.append({"role": "assistant", "content": full_response}) | |