import streamlit as st from QnA import Q_A import re,time from QnA import get_hugging_face_model , summarize ,get_groq_model def summarize_data(documents,api_key): if api_key.startswith('gsk'): llm = get_groq_model(api_key) else: llm= get_hugging_face_model(api_key=api_key) summary = summarize(documents,llm) return summary def QA_Bot(vectorstore,API_KEY,documents): summary_response = None st.title("Q&A Bot") # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) summary_response = summarize_data(documents,API_KEY) print(summary_response) # React to user input if prompt := st.chat_input("What is up?"): # Display user message in chat message container st.chat_message("user").markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) ai_response = Q_A(vectorstore,prompt,API_KEY) response = f"Echo: {ai_response}" # Display assistant response in chat message container with st.chat_message("assistant"): message_placeholder = st.empty() full_response = "" for chunk in re.split(r'(\s+)', response): full_response += chunk + " " time.sleep(0.01) # Add a blinking cursor to simulate typing message_placeholder.markdown(full_response + "▌") # Add assistant response to chat history st.session_state.messages.append({"role": "assistant", "content": full_response})