EDICT / my_diffusers /utils /model_card_template.md
root
secret auth
d77a781
---
{{ card_data }}
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# {{ model_name | default("Diffusion Model") }}
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `{{ dataset_name }}` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: {{ learning_rate }}
- train_batch_size: {{ train_batch_size }}
- eval_batch_size: {{ eval_batch_size }}
- gradient_accumulation_steps: {{ gradient_accumulation_steps }}
- optimizer: AdamW with betas=({{ adam_beta1 }}, {{ adam_beta2 }}), weight_decay={{ adam_weight_decay }} and epsilon={{ adam_epsilon }}
- lr_scheduler: {{ lr_scheduler }}
- lr_warmup_steps: {{ lr_warmup_steps }}
- ema_inv_gamma: {{ ema_inv_gamma }}
- ema_inv_gamma: {{ ema_power }}
- ema_inv_gamma: {{ ema_max_decay }}
- mixed_precision: {{ mixed_precision }}
### Training results
📈 [TensorBoard logs](https://huggingface.co/{{ repo_name }}/tensorboard?#scalars)