Spaces:
Runtime error
Runtime error
# Generated 2023-08-03 from: | |
# /home/salah/new_tunisian_model/hparams/train_tunisian_withwavlm.yaml | |
# yamllint disable | |
# ################################ | |
# Model: wav2vec2 + DNN + CTC | |
# Augmentation: SpecAugment | |
# Authors: Titouan Parcollet 2021 | |
# ################################ | |
seed: 1994 | |
__set_seed: !!python/object/apply:torch.manual_seed [1234] | |
output_folder: results/non_semi_final_stac | |
wer_file: !ref <output_folder>/wer.txt | |
save_folder: !ref <output_folder>/save | |
train_log: !ref <output_folder>/train_log.txt | |
# Data files | |
data_folder: junk # e.g, /localscratch/cv-corpus-5.1-2020-06-22/fr | |
train_tsv_file: junk/train.tsv # Standard CommonVoice .tsv files | |
dev_tsv_file: junk/dev.tsv # Standard CommonVoice .tsv files | |
test_tsv_file: junk/test.tsv # Standard CommonVoice .tsv files | |
accented_letters: true | |
csv_folder: /gpfsscratch/rech/nou/uzn19yk/switched_data/extended_clean/ | |
train_csv: !ref <csv_folder>/train.csv | |
valid_csv: !ref <csv_folder>/dev.csv | |
test_csv: | |
- all_tests/cs_test.csv | |
- all_tests/stac_test.csv | |
# We remove utterance slonger than 10s in the train/dev/test sets as | |
# longer sentences certainly correspond to "open microphones". | |
avoid_if_longer_than: 13.0 | |
avoid_if_shorter_than: 0.5 | |
# Training parameters | |
number_of_epochs: 20 | |
lr: 0.0002 | |
lr_weights: 0.01 | |
sorting: ascending | |
auto_mix_prec: False | |
sample_rate: 16000 | |
language_modelling: True | |
ngram_lm_path: arpas/pluslanguages_everything.arpa | |
# With data_parallel batch_size is split into N jobs | |
# With DDP batch_size is multiplied by N jobs | |
# Must be 3 per GPU to fit 32GB of VRAM | |
batch_size: 3 | |
test_batch_size: 4 | |
# Dataloader options | |
dataloader_options: | |
batch_size: !ref <batch_size> | |
num_workers: 6 | |
test_dataloader_options: | |
batch_size: !ref <test_batch_size> | |
num_workers: 6 | |
# Model parameters | |
activation: !name:torch.nn.Sigmoid | |
dnn_layers: 1 | |
dnn_neurons: 768 | |
freeze_encoder: True | |
# Outputs | |
output_neurons: 76 # BPE size, index(blank/eos/bos) = 0 | |
# Functions and classes | |
# | |
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter | |
limit: !ref <number_of_epochs> | |
encoder_dim: 3217 | |
enc: !new:speechbrain.nnet.RNN.LSTM | |
input_shape: [Null, Null, !ref <encoder_dim>] | |
num_layers: 2 | |
bidirectional: True | |
dropout: 0.2 | |
hidden_size: 1024 | |
ctc_lin: !new:speechbrain.nnet.linear.Linear | |
input_size: 2048 | |
n_neurons: !ref <output_neurons> | |
log_softmax: !new:speechbrain.nnet.activations.Softmax | |
apply_log: True | |
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss | |
blank_index: !ref <blank_index> | |
modules: | |
enc: !ref <enc> | |
ctc_lin: !ref <ctc_lin> | |
model: !new:torch.nn.ModuleList | |
- [!ref <enc>, !ref <ctc_lin>] | |
model_opt_class: !name:torch.optim.Adam | |
lr: !ref <lr> | |
weights_opt_class: !name:torch.optim.Adam | |
lr: !ref <lr_weights> | |
lr_annealing_model: !new:speechbrain.nnet.schedulers.NewBobScheduler | |
initial_value: !ref <lr> | |
improvement_threshold: 0.0025 | |
annealing_factor: 0.8 | |
patient: 0 | |
lr_annealing_weights: !new:speechbrain.nnet.schedulers.NewBobScheduler | |
initial_value: !ref <lr_weights> | |
improvement_threshold: 0.0025 | |
annealing_factor: 0.9 | |
patient: 0 | |
label_encoder: !new:speechbrain.dataio.encoder.CTCTextEncoder | |
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer | |
checkpoints_dir: !ref <save_folder> | |
recoverables: | |
model: !ref <model> | |
scheduler_model: !ref <lr_annealing_model> | |
scheduler_encoder: !ref <lr_annealing_weights> | |
counter: !ref <epoch_counter> | |
tokenizer: !ref <label_encoder> | |
blank_index: 0 | |
unk_index: 1 | |
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger | |
save_file: !ref <train_log> | |
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats | |
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats | |
split_tokens: True | |