anonymoussubmitter222
first commit
d081411
raw
history blame
3.99 kB
# Generated 2023-08-03 from:
# /home/salah/new_tunisian_model/hparams/train_tunisian_withwavlm.yaml
# yamllint disable
# ################################
# Model: wav2vec2 + DNN + CTC
# Augmentation: SpecAugment
# Authors: Titouan Parcollet 2021
# ################################
seed: 1994
__set_seed: !!python/object/apply:torch.manual_seed [1234]
output_folder: results/non_semi_final_stac
wer_file: !ref <output_folder>/wer.txt
save_folder: !ref <output_folder>/save
train_log: !ref <output_folder>/train_log.txt
# Data files
data_folder: junk # e.g, /localscratch/cv-corpus-5.1-2020-06-22/fr
train_tsv_file: junk/train.tsv # Standard CommonVoice .tsv files
dev_tsv_file: junk/dev.tsv # Standard CommonVoice .tsv files
test_tsv_file: junk/test.tsv # Standard CommonVoice .tsv files
accented_letters: true
csv_folder: /gpfsscratch/rech/nou/uzn19yk/switched_data/extended_clean/
train_csv: !ref <csv_folder>/train.csv
valid_csv: !ref <csv_folder>/dev.csv
test_csv:
- all_tests/cs_test.csv
- all_tests/stac_test.csv
# We remove utterance slonger than 10s in the train/dev/test sets as
# longer sentences certainly correspond to "open microphones".
avoid_if_longer_than: 13.0
avoid_if_shorter_than: 0.5
# Training parameters
number_of_epochs: 20
lr: 0.0002
lr_weights: 0.01
sorting: ascending
auto_mix_prec: False
sample_rate: 16000
language_modelling: True
ngram_lm_path: arpas/pluslanguages_everything.arpa
# With data_parallel batch_size is split into N jobs
# With DDP batch_size is multiplied by N jobs
# Must be 3 per GPU to fit 32GB of VRAM
batch_size: 3
test_batch_size: 4
# Dataloader options
dataloader_options:
batch_size: !ref <batch_size>
num_workers: 6
test_dataloader_options:
batch_size: !ref <test_batch_size>
num_workers: 6
# Model parameters
activation: !name:torch.nn.Sigmoid
dnn_layers: 1
dnn_neurons: 768
freeze_encoder: True
# Outputs
output_neurons: 76 # BPE size, index(blank/eos/bos) = 0
# Functions and classes
#
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
limit: !ref <number_of_epochs>
encoder_dim: 3217
enc: !new:speechbrain.nnet.RNN.LSTM
input_shape: [Null, Null, !ref <encoder_dim>]
num_layers: 2
bidirectional: True
dropout: 0.2
hidden_size: 1024
ctc_lin: !new:speechbrain.nnet.linear.Linear
input_size: 2048
n_neurons: !ref <output_neurons>
log_softmax: !new:speechbrain.nnet.activations.Softmax
apply_log: True
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
blank_index: !ref <blank_index>
modules:
enc: !ref <enc>
ctc_lin: !ref <ctc_lin>
model: !new:torch.nn.ModuleList
- [!ref <enc>, !ref <ctc_lin>]
model_opt_class: !name:torch.optim.Adam
lr: !ref <lr>
weights_opt_class: !name:torch.optim.Adam
lr: !ref <lr_weights>
lr_annealing_model: !new:speechbrain.nnet.schedulers.NewBobScheduler
initial_value: !ref <lr>
improvement_threshold: 0.0025
annealing_factor: 0.8
patient: 0
lr_annealing_weights: !new:speechbrain.nnet.schedulers.NewBobScheduler
initial_value: !ref <lr_weights>
improvement_threshold: 0.0025
annealing_factor: 0.9
patient: 0
label_encoder: !new:speechbrain.dataio.encoder.CTCTextEncoder
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
checkpoints_dir: !ref <save_folder>
recoverables:
model: !ref <model>
scheduler_model: !ref <lr_annealing_model>
scheduler_encoder: !ref <lr_annealing_weights>
counter: !ref <epoch_counter>
tokenizer: !ref <label_encoder>
blank_index: 0
unk_index: 1
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
save_file: !ref <train_log>
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
split_tokens: True