LLMGuardian / src /llmguardian /vectors /retrieval_guard.py
DeWitt Gibson
Add Vector Package
ba92f0e
"""
vectors/retrieval_guard.py - Security for Retrieval-Augmented Generation (RAG) operations
"""
import numpy as np
from typing import Dict, List, Optional, Any, Tuple, Set
from dataclasses import dataclass
from datetime import datetime
from enum import Enum
import hashlib
import re
from collections import defaultdict
from ..core.logger import SecurityLogger
from ..core.exceptions import SecurityError
class RetrievalRisk(Enum):
"""Types of retrieval-related risks"""
RELEVANCE_MANIPULATION = "relevance_manipulation"
CONTEXT_INJECTION = "context_injection"
DATA_POISONING = "data_poisoning"
RETRIEVAL_BYPASS = "retrieval_bypass"
PRIVACY_LEAK = "privacy_leak"
EMBEDDING_ATTACK = "embedding_attack"
CHUNKING_MANIPULATION = "chunking_manipulation"
@dataclass
class RetrievalContext:
"""Context for retrieval operations"""
query_embedding: np.ndarray
retrieved_embeddings: List[np.ndarray]
retrieved_content: List[str]
metadata: Optional[Dict[str, Any]] = None
source: Optional[str] = None
@dataclass
class SecurityCheck:
"""Security check definition"""
name: str
description: str
threshold: float
severity: int # 1-10
@dataclass
class CheckResult:
"""Result of a security check"""
check_name: str
passed: bool
risk_level: float
details: Dict[str, Any]
recommendations: List[str]
@dataclass
class GuardResult:
"""Complete result of retrieval guard checks"""
is_safe: bool
checks_passed: List[str]
checks_failed: List[str]
risks: List[RetrievalRisk]
filtered_content: List[str]
metadata: Dict[str, Any]
class RetrievalGuard:
"""Security guard for RAG operations"""
def __init__(self, security_logger: Optional[SecurityLogger] = None):
self.security_logger = security_logger
self.security_checks = self._initialize_security_checks()
self.risk_patterns = self._initialize_risk_patterns()
self.check_history: List[GuardResult] = []
def _initialize_security_checks(self) -> Dict[str, SecurityCheck]:
"""Initialize security checks"""
return {
"relevance": SecurityCheck(
name="relevance_check",
description="Check relevance between query and retrieved content",
threshold=0.7,
severity=7
),
"consistency": SecurityCheck(
name="consistency_check",
description="Check consistency among retrieved chunks",
threshold=0.6,
severity=6
),
"privacy": SecurityCheck(
name="privacy_check",
description="Check for potential privacy leaks",
threshold=0.8,
severity=9
),
"injection": SecurityCheck(
name="injection_check",
description="Check for context injection attempts",
threshold=0.75,
severity=8
),
"chunking": SecurityCheck(
name="chunking_check",
description="Check for chunking manipulation",
threshold=0.65,
severity=6
)
}
def _initialize_risk_patterns(self) -> Dict[str, Any]:
"""Initialize risk detection patterns"""
return {
"privacy_patterns": {
"pii": r"\b\d{3}-\d{2}-\d{4}\b", # SSN
"email": r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b",
"credit_card": r"\b\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}\b",
"api_key": r"\b([A-Za-z0-9]{32,})\b"
},
"injection_patterns": {
"system_prompt": r"system:\s*|instruction:\s*",
"delimiter": r"[<\[{](?:system|prompt|instruction)[>\]}]",
"escape": r"\\n|\\r|\\t|\\b|\\f"
},
"manipulation_patterns": {
"repetition": r"(.{50,}?)\1{2,}",
"formatting": r"\[format\]|\[style\]|\[template\]",
"control": r"\[control\]|\[override\]|\[skip\]"
}
}
def check_retrieval(self, context: RetrievalContext) -> GuardResult:
"""Perform security checks on retrieval operation"""
try:
checks_passed = []
checks_failed = []
risks = []
filtered_content = []
# Check relevance
relevance_result = self._check_relevance(context)
self._process_check_result(
relevance_result,
checks_passed,
checks_failed,
risks
)
# Check consistency
consistency_result = self._check_consistency(context)
self._process_check_result(
consistency_result,
checks_passed,
checks_failed,
risks
)
# Check privacy
privacy_result = self._check_privacy(context)
self._process_check_result(
privacy_result,
checks_passed,
checks_failed,
risks
)
# Check for injection attempts
injection_result = self._check_injection(context)
self._process_check_result(
injection_result,
checks_passed,
checks_failed,
risks
)
# Check chunking
chunking_result = self._check_chunking(context)
self._process_check_result(
chunking_result,
checks_passed,
checks_failed,
risks
)
# Filter content based on check results
filtered_content = self._filter_content(context, risks)
# Create result
result = GuardResult(
is_safe=len(checks_failed) == 0,
checks_passed=checks_passed,
checks_failed=checks_failed,
risks=list(set(risks)),
filtered_content=filtered_content,
metadata={
"timestamp": datetime.utcnow().isoformat(),
"original_count": len(context.retrieved_content),
"filtered_count": len(filtered_content),
"risk_count": len(risks)
}
)
# Log result
if not result.is_safe and self.security_logger:
self.security_logger.log_security_event(
"retrieval_guard_alert",
checks_failed=checks_failed,
risks=[r.value for r in risks],
filtered_ratio=len(filtered_content)/len(context.retrieved_content)
)
self.check_history.append(result)
return result
except Exception as e:
if self.security_logger:
self.security_logger.log_security_event(
"retrieval_guard_error",
error=str(e)
)
raise SecurityError(f"Retrieval guard check failed: {str(e)}")
def _check_relevance(self, context: RetrievalContext) -> CheckResult:
"""Check relevance between query and retrieved content"""
relevance_scores = []
# Calculate cosine similarity between query and each retrieved embedding
for emb in context.retrieved_embeddings:
score = float(np.dot(
context.query_embedding,
emb
) / (
np.linalg.norm(context.query_embedding) *
np.linalg.norm(emb)
))
relevance_scores.append(score)
avg_relevance = np.mean(relevance_scores)
check = self.security_checks["relevance"]
return CheckResult(
check_name=check.name,
passed=avg_relevance >= check.threshold,
risk_level=1.0 - avg_relevance,
details={
"average_relevance": float(avg_relevance),
"min_relevance": float(min(relevance_scores)),
"max_relevance": float(max(relevance_scores))
},
recommendations=[
"Adjust retrieval threshold",
"Implement semantic filtering",
"Review chunking strategy"
] if avg_relevance < check.threshold else []
)
def _check_consistency(self, context: RetrievalContext) -> CheckResult:
"""Check consistency among retrieved chunks"""
consistency_scores = []
# Calculate pairwise similarities between retrieved embeddings
for i in range(len(context.retrieved_embeddings)):
for j in range(i + 1, len(context.retrieved_embeddings)):
score = float(np.dot(
context.retrieved_embeddings[i],
context.retrieved_embeddings[j]
) / (
np.linalg.norm(context.retrieved_embeddings[i]) *
np.linalg.norm(context.retrieved_embeddings[j])
))
consistency_scores.append(score)
avg_consistency = np.mean(consistency_scores) if consistency_scores else 0
check = self.security_checks["consistency"]
return CheckResult(
check_name=check.name,
passed=avg_consistency >= check.threshold,
risk_level=1.0 - avg_consistency,
details={
"average_consistency": float(avg_consistency),
"min_consistency": float(min(consistency_scores)) if consistency_scores else 0,
"max_consistency": float(max(consistency_scores)) if consistency_scores else 0
},
recommendations=[
"Review chunk coherence",
"Adjust chunk size",
"Implement overlap detection"
] if avg_consistency < check.threshold else []
)
def _check_privacy(self, context: RetrievalContext) -> CheckResult:
"""Check for potential privacy leaks"""
privacy_violations = defaultdict(list)
for idx, content in enumerate(context.retrieved_content):
for pattern_name, pattern in self.risk_patterns["privacy_patterns"].items():
matches = re.finditer(pattern, content)
for match in matches:
privacy_violations[pattern_name].append((idx, match.group()))
check = self.security_checks["privacy"]
violation_count = sum(len(v) for v in privacy_violations.values())
risk_level = min(1.0, violation_count / len(context.retrieved_content))
return CheckResult(
check_name=check.name,
passed=risk_level < (1 - check.threshold),
risk_level=risk_level,
details={
"violation_count": violation_count,
"violation_types": list(privacy_violations.keys()),
"affected_chunks": list(set(
idx for violations in privacy_violations.values()
for idx, _ in violations
))
},
recommendations=[
"Implement data masking",
"Add privacy filters",
"Review content preprocessing"
] if violation_count > 0 else []
)
def _check_injection(self, context: RetrievalContext) -> CheckResult:
"""Check for context injection attempts"""
injection_attempts = defaultdict(list)
for idx, content in enumerate(context.retrieved_content):
for pattern_name, pattern in self.risk_patterns["injection_patterns"].items():
matches = re.finditer(pattern, content)
for match in matches:
injection_attempts[pattern_name].append((idx, match.group()))
check = self.security_checks["injection"]
attempt_count = sum(len(v) for v in injection_attempts.values())
risk_level = min(1.0, attempt_count / len(context.retrieved_content))
return CheckResult(
check_name=check.name,
passed=risk_level < (1 - check.threshold),
risk_level=risk_level,
details={
"attempt_count": attempt_count,
"attempt_types": list(injection_attempts.keys()),
"affected_chunks": list(set(
idx for attempts in injection_attempts.values()
for idx, _ in attempts
))
},
recommendations=[
"Enhance input sanitization",
"Implement content filtering",
"Add injection detection"
] if attempt_count > 0 else []
)
def _check_chunking(self, context: RetrievalContext) -> CheckResult:
"""Check for chunking manipulation"""
manipulation_attempts = defaultdict(list)
chunk_sizes = [len(content) for content in context.retrieved_content]
# Check for suspicious patterns
for idx, content in enumerate(context.retrieved_content):
for pattern_name, pattern in self.risk_patterns["manipulation_patterns"].items():
matches = re.finditer(pattern, content)
for match in matches:
manipulation_attempts[pattern_name].append((idx, match.group()))
# Analyze chunk size distribution
mean_size = np.mean(chunk_sizes)
std_size = np.std(chunk_sizes)
suspicious_chunks = [
idx for idx, size in enumerate(chunk_sizes)
if abs(size - mean_size) > 2 * std_size
]
check = self.security_checks["chunking"]
violation_count = len(suspicious_chunks) + sum(len(v) for v in manipulation_attempts.values())
risk_level = min(1.0, violation_count / len(context.retrieved_content))
return CheckResult(
check_name=check.name,
passed=risk_level < (1 - check.threshold),
risk_level=risk_level,
details={
"violation_count": violation_count,
"suspicious_chunks": suspicious_chunks,
"manipulation_types": list(manipulation_attempts.keys()),
"chunk_stats": {
"mean_size": float(mean_size),
"std_size": float(std_size),
"min_size": min(chunk_sizes),
"max_size": max(chunk_sizes)
}
},
recommendations=[
"Review chunking strategy",
"Implement size normalization",
"Add pattern detection"
] if violation_count > 0 else []
)
def _process_check_result(self,
result: CheckResult,
checks_passed: List[str],
checks_failed: List[str],
risks: List[RetrievalRisk]):
"""Process check result and update tracking lists"""
if result.passed:
checks_passed.append(result.check_name)
else:
checks_failed.append(result.check_name)
# Map check names to risks
risk_mapping = {
"relevance_check": RetrievalRisk.RELEVANCE_MANIPULATION,
"consistency_check": RetrievalRisk.CONTEXT_INJECTION,
"privacy_check": RetrievalRisk.PRIVACY_LEAK,
"injection_check": RetrievalRisk.CONTEXT_INJECTION,
"chunking_check": RetrievalRisk.CHUNKING_MANIPULATION
}
if result.check_name in risk_mapping:
risks.append(risk_mapping[result.check_name])
# Log failed check if logger is available
if self.security_logger:
self.security_logger.log_security_event(
"retrieval_check_failed",
check_name=result.check_name,
risk_level=result.risk_level,
details=result.details
)
def _check_chunking(self, context: RetrievalContext) -> CheckResult:
"""Check for chunking manipulation and anomalies"""
check = self.security_checks["chunking"]
manipulation_attempts = defaultdict(list)
anomalies = []
# Get chunk statistics
chunk_sizes = [len(content) for content in context.retrieved_content]
chunk_mean = np.mean(chunk_sizes)
chunk_std = np.std(chunk_sizes)
# Check each chunk for issues
for idx, content in enumerate(context.retrieved_content):
# Check size anomalies
if abs(len(content) - chunk_mean) > 2 * chunk_std:
anomalies.append(("size_anomaly", idx))
# Check for manipulation patterns
for pattern_name, pattern in self.risk_patterns["manipulation_patterns"].items():
if matches := list(re.finditer(pattern, content)):
manipulation_attempts[pattern_name].extend(
(idx, match.group()) for match in matches
)
# Check for content repetition
if self._detect_repetition(content):
anomalies.append(("repetition", idx))
# Check for suspicious formatting
if self._detect_suspicious_formatting(content):
anomalies.append(("suspicious_formatting", idx))
# Calculate risk metrics
total_issues = len(anomalies) + sum(len(attempts) for attempts in manipulation_attempts.values())
risk_level = min(1.0, total_issues / (len(context.retrieved_content) * 2))
# Generate recommendations based on findings
recommendations = []
if anomalies:
recommendations.append("Review chunk size distribution and normalization")
if manipulation_attempts:
recommendations.append("Implement stricter content validation")
recommendations.append("Add pattern-based filtering")
if risk_level > 0.5:
recommendations.append("Consider reducing chunk size variance")
return CheckResult(
check_name=check.name,
passed=risk_level < (1 - check.threshold),
risk_level=risk_level,
details={
"anomalies": [{"type": a_type, "chunk_index": idx} for a_type, idx in anomalies],
"manipulation_attempts": {
pattern: [{"chunk_index": idx, "content": content}
for idx, content in attempts]
for pattern, attempts in manipulation_attempts.items()
},
"chunk_stats": {
"mean_size": float(chunk_mean),
"std_size": float(chunk_std),
"size_range": (int(min(chunk_sizes)), int(max(chunk_sizes))),
"total_chunks": len(context.retrieved_content)
}
},
recommendations=recommendations
)
def _detect_repetition(self, content: str) -> bool:
"""Detect suspicious content repetition"""
# Check for repeated phrases (50+ characters)
repetition_pattern = r'(.{50,}?)\1+'
if re.search(repetition_pattern, content):
return True
# Check for unusual character repetition
char_counts = defaultdict(int)
for char in content:
char_counts[char] += 1
total_chars = len(content)
for count in char_counts.values():
if count > total_chars * 0.3: # More than 30% of same character
return True
return False
def _detect_suspicious_formatting(self, content: str) -> bool:
"""Detect suspicious content formatting"""
suspicious_patterns = [
r'\[(?:format|style|template)\]', # Format tags
r'\{(?:format|style|template)\}', # Format braces
r'<(?:format|style|template)>', # Format HTML-style tags
r'\\[nr]{10,}', # Excessive newlines/returns
r'\s{10,}', # Excessive whitespace
r'[^\w\s]{10,}' # Excessive special characters
]
return any(re.search(pattern, content) for pattern in suspicious_patterns)
def _filter_content(self,
context: RetrievalContext,
risks: List[RetrievalRisk]) -> List[str]:
"""Filter retrieved content based on detected risks"""
filtered_content = []
skip_indices = set()
# Collect indices to skip based on risks
for risk in risks:
if risk == RetrievalRisk.PRIVACY_LEAK:
# Skip chunks with privacy violations
skip_indices.update(self._find_privacy_violations(context))
elif risk == RetrievalRisk.CONTEXT_INJECTION:
# Skip chunks with injection attempts
skip_indices.update(self._find_injection_attempts(context))
elif risk == RetrievalRisk.RELEVANCE_MANIPULATION:
# Skip irrelevant chunks
skip_indices.update(self._find_irrelevant_chunks(context))
# Filter content
for idx, content in enumerate(context.retrieved_content):
if idx not in skip_indices:
# Apply any necessary sanitization
sanitized = self._sanitize_content(content)
if sanitized:
filtered_content.append(sanitized)
return filtered_content
def _find_privacy_violations(self, context: RetrievalContext) -> Set[int]:
"""Find chunks containing privacy violations"""
violation_indices = set()
for idx, content in enumerate(context.retrieved_content):
for pattern in self.risk_patterns["privacy_patterns"].values():
if re.search(pattern, content):
violation_indices.add(idx)
break
return violation_indices
def _find_injection_attempts(self, context: RetrievalContext) -> Set[int]:
"""Find chunks containing injection attempts"""
injection_indices = set()
for idx, content in enumerate(context.retrieved_content):
for pattern in self.risk_patterns["injection_patterns"].values():
if re.search(pattern, content):
injection_indices.add(idx)
break
return injection_indices
def _find_irrelevant_chunks(self, context: RetrievalContext) -> Set[int]:
"""Find irrelevant chunks based on similarity"""
irrelevant_indices = set()
threshold = self.security_checks["relevance"].threshold
for idx, emb in enumerate(context.retrieved_embeddings):
similarity = float(np.dot(
context.query_embedding,
emb
) / (
np.linalg.norm(context.query_embedding) *
np.linalg.norm(emb)
))
if similarity < threshold:
irrelevant_indices.add(idx)
return irrelevant_indices
def _sanitize_content(self, content: str) -> Optional[str]:
"""Sanitize content by removing or masking sensitive information"""
sanitized = content
# Mask privacy-sensitive information
for pattern in self.risk_patterns["privacy_patterns"].values():
sanitized = re.sub(pattern, "[REDACTED]", sanitized)
# Remove injection attempts
for pattern in self.risk_patterns["injection_patterns"].values():
sanitized = re.sub(pattern, "", sanitized)
# Remove manipulation attempts
for pattern in self.risk_patterns["manipulation_patterns"].values():
sanitized = re.sub(pattern, "", sanitized)
# Clean up whitespace
sanitized = " ".join(sanitized.split())
return sanitized if sanitized.strip() else None
def update_security_checks(self, updates: Dict[str, SecurityCheck]):
"""Update security check configurations"""
self.security_checks.update(updates)
def update_risk_patterns(self, updates: Dict[str, Dict[str, str]]):
"""Update risk detection patterns"""
for category, patterns in updates.items():
if category in self.risk_patterns:
self.risk_patterns[category].update(patterns)
else:
self.risk_patterns[category] = patterns
def get_check_history(self) -> List[Dict[str, Any]]:
"""Get history of guard check results"""
return [
{
"timestamp": result.metadata["timestamp"],
"is_safe": result.is_safe,
"checks_passed": result.checks_passed,
"checks_failed": result.checks_failed,
"risks": [risk.value for risk in result.risks],
"filtered_ratio": result.metadata["filtered_count"] /
result.metadata["original_count"]
}
for result in self.check_history
]
def clear_history(self):
"""Clear check history"""
self.check_history.clear()
def add_security_check(self, name: str, check: SecurityCheck):
"""Add a new security check"""
self.security_checks[name] = check
def remove_security_check(self, name: str):
"""Remove a security check"""
self.security_checks.pop(name, None)
def analyze_patterns(self) -> Dict[str, Any]:
"""Analyze detection patterns effectiveness"""
pattern_stats = {
"privacy": defaultdict(int),
"injection": defaultdict(int),
"manipulation": defaultdict(int)
}
for result in self.check_history:
if not result.is_safe:
for risk in result.risks:
if risk == RetrievalRisk.PRIVACY_LEAK:
for pattern in self.risk_patterns["privacy_patterns"]:
pattern_stats["privacy"][pattern] += 1
elif risk == RetrievalRisk.CONTEXT_INJECTION:
for pattern in self.risk_patterns["injection_patterns"]:
pattern_stats["injection"][pattern] += 1
elif risk == RetrievalRisk.CHUNKING_MANIPULATION:
for pattern in self.risk_patterns["manipulation_patterns"]:
pattern_stats["manipulation"][pattern] += 1
return {
"total_checks": len(self.check_history),
"pattern_matches": dict(pattern_stats),
"pattern_effectiveness": {
category: {
pattern: count / len(self.check_history)
for pattern, count in patterns.items()
}
for category, patterns in pattern_stats.items()
}
}
def get_recommendations(self) -> List[Dict[str, Any]]:
"""Get security recommendations based on check history"""
if not self.check_history:
return []
recommendations = []
risk_counts = defaultdict(int)
total_checks = len(self.check_history)
# Count risk occurrences
for result in self.check_history:
for risk in result.risks:
risk_counts[risk] += 1
# Generate recommendations
for risk, count in risk_counts.items():
frequency = count / total_checks
if frequency > 0.1: # More than 10% occurrence
recommendations.append({
"risk": risk.value,
"frequency": frequency,
"severity": "high" if frequency > 0.5 else "medium",
"recommendations": self._get_risk_recommendations(risk)
})
return recommendations
def _get_risk_recommendations(self, risk: RetrievalRisk) -> List[str]:
"""Get recommendations for specific risk"""
recommendations = {
RetrievalRisk.PRIVACY_LEAK: [
"Implement stronger data masking",
"Add privacy-focused preprocessing",
"Review data handling policies"
],
RetrievalRisk.CONTEXT_INJECTION: [
"Enhance input validation",
"Implement context boundaries",
"Add injection detection"
],
RetrievalRisk.RELEVANCE_MANIPULATION: [
"Adjust similarity thresholds",
"Implement semantic filtering",
"Review retrieval strategy"
],
RetrievalRisk.CHUNKING_MANIPULATION: [
"Standardize chunk sizes",
"Add chunk validation",
"Implement overlap detection"
]
}
return recommendations.get(risk, [])