leaderboard / app.py
Rafael Jaime Moreno
some changes wip openrouter
6d36002
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import os
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
# Create directories first
os.makedirs(EVAL_REQUESTS_PATH, exist_ok=True)
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception as e:
print(f"Error downloading requests: {e}")
# Initialize with empty directory if download fails
pass
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception as e:
print(f"Error downloading results: {e}")
# Initialize with empty directory if download fails
pass
# Initialize the leaderboard DataFrame
try:
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
except Exception:
LEADERBOARD_DF = pd.DataFrame(columns=COLS)
# Get evaluation queue status
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Seleccionar columnas:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(
AutoEvalColumn.params.name,
type="slider",
min=0.01,
max=150,
label="Select the number of parameters (B)",
),
ColumnFilter(
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def submit_handler(model, base_model, revision, precision, weight_type, model_type, submit_type, openrouter_key):
"""Manejador unificado para ambos tipos de submit"""
return add_new_eval(
model=model,
base_model=base_model,
revision=revision,
precision=precision,
weight_type=weight_type,
model_type=model_type,
submit_type=submit_type,
openrouter_key=openrouter_key if submit_type == "openrouter" else None
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
# Replace Radio with Tabs
with gr.Tabs() as submit_tabs:
# Huggingface Tab
with gr.TabItem("Huggingface") as huggingface_tab:
with gr.Row():
with gr.Column():
hf_model_name_textbox = gr.Textbox(label="Model name")
hf_revision_name_textbox = gr.Textbox(
label="Revision commit",
placeholder="main"
)
hf_model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
hf_precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
hf_weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
hf_base_model_name_textbox = gr.Textbox(
label="Base model (for delta or adapter weights)"
)
hf_submit_button = gr.Button("Submit Huggingface Model")
hf_submission_result = gr.Markdown()
# OpenRouter Tab
with gr.TabItem("OpenRouter") as openrouter_tab:
with gr.Row():
with gr.Column():
or_model_name_textbox = gr.Textbox(
label="OpenRouter Model ID"
)
# Get available themes from EXAM_QUESTIONS
from src.evaluation.questions import EXAM_QUESTIONS
# Solución para mostrar solo los labels
# Creamos un diccionario auxiliar para mapear los nombres visibles a los valores internos
theme_label_to_value = {}
theme_labels = ["Todos los temas"] # Lista de solo labels para mostrar
theme_values = [None] # Lista de valores correspondientes (misma posición)
# Rellenamos las listas de labels y values en el mismo orden
for theme, questions in EXAM_QUESTIONS.items():
if questions:
original_theme = questions[0]["theme"]
theme_labels.append(original_theme) # Solo nombre legible
theme_values.append(theme) # Valor interno
theme_label_to_value[original_theme] = theme # Para mapeo
# Función para convertir de label a value cuando se selecciona
def convert_theme_selection(label):
if label == "Todos los temas" or label is None:
return None
return theme_label_to_value.get(label)
or_theme = gr.Dropdown(
choices=theme_labels, # Solo mostramos los labels
label="Tema del examen (opcional, por defecto todos)",
multiselect=False,
interactive=True,
value=None
)
or_model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
or_api_key = gr.Textbox(
label="OpenRouter API Key",
type="password"
)
or_submit_button = gr.Button("Submit OpenRouter Model")
or_submission_result = gr.Markdown()
# Replace old submit handler with individual handlers for each tab
def hf_submit_handler(model, base_model, revision, precision, weight_type, model_type):
return add_new_eval(
model=model,
base_model=base_model,
revision=revision,
precision=precision,
weight_type=weight_type,
model_type=model_type,
submit_type="huggingface",
openrouter_key=None
)
def or_submit_handler(model, model_type, openrouter_key, theme_label=None, progress=gr.Progress()):
"""OpenRouter submission handler with progress indicator"""
# Convertir el label seleccionado al value correspondiente
theme_value = convert_theme_selection(theme_label)
# Pass theme as parameter to run_exam function via do_exam.py
return add_new_eval(
model=model,
base_model="",
revision="openrouter",
precision="float16", # Default for API models
weight_type="Original",
model_type=model_type,
submit_type="openrouter",
openrouter_key=openrouter_key,
exam_theme=theme_value, # Pasar el valor interno, no el label
progress=progress, # Añadir el indicador de progreso
leaderboard_component=leaderboard # Pasar la referencia al componente leaderboard
)
# Connect handlers to buttons
hf_submit_button.click(
hf_submit_handler,
inputs=[
hf_model_name_textbox,
hf_base_model_name_textbox,
hf_revision_name_textbox,
hf_precision,
hf_weight_type,
hf_model_type,
],
outputs=hf_submission_result,
)
or_submit_button.click(
or_submit_handler,
inputs=[
or_model_name_textbox,
or_model_type,
or_api_key,
or_theme,
],
outputs=or_submission_result,
)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()