Spaces:
Running
Running
import gradio as gr | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
import os | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
AutoEvalColumn, | |
ModelType, | |
fields, | |
WeightType, | |
Precision | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_eval | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
# Create directories first | |
os.makedirs(EVAL_REQUESTS_PATH, exist_ok=True) | |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) | |
### Space initialisation | |
try: | |
print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception as e: | |
print(f"Error downloading requests: {e}") | |
# Initialize with empty directory if download fails | |
pass | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception as e: | |
print(f"Error downloading results: {e}") | |
# Initialize with empty directory if download fails | |
pass | |
# Initialize the leaderboard DataFrame | |
try: | |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
except Exception: | |
LEADERBOARD_DF = pd.DataFrame(columns=COLS) | |
# Get evaluation queue status | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
def init_leaderboard(dataframe): | |
return Leaderboard( | |
value=dataframe, | |
datatype=[c.type for c in fields(AutoEvalColumn)], | |
select_columns=SelectColumns( | |
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | |
label="Seleccionar columnas:", | |
), | |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name], | |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
filter_columns=[ | |
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"), | |
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), | |
ColumnFilter( | |
AutoEvalColumn.params.name, | |
type="slider", | |
min=0.01, | |
max=150, | |
label="Select the number of parameters (B)", | |
), | |
ColumnFilter( | |
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True | |
), | |
], | |
bool_checkboxgroup_label="Hide models", | |
interactive=False, | |
) | |
def submit_handler(model, base_model, revision, precision, weight_type, model_type, submit_type, openrouter_key): | |
"""Manejador unificado para ambos tipos de submit""" | |
return add_new_eval( | |
model=model, | |
base_model=base_model, | |
revision=revision, | |
precision=precision, | |
weight_type=weight_type, | |
model_type=model_type, | |
submit_type=submit_type, | |
openrouter_key=openrouter_key if submit_type == "openrouter" else None | |
) | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
leaderboard = init_leaderboard(LEADERBOARD_DF) | |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Column(): | |
with gr.Accordion( | |
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
finished_eval_table = gr.components.Dataframe( | |
value=finished_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
running_eval_table = gr.components.Dataframe( | |
value=running_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
pending_eval_table = gr.components.Dataframe( | |
value=pending_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Row(): | |
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") | |
# Replace Radio with Tabs | |
with gr.Tabs() as submit_tabs: | |
# Huggingface Tab | |
with gr.TabItem("Huggingface") as huggingface_tab: | |
with gr.Row(): | |
with gr.Column(): | |
hf_model_name_textbox = gr.Textbox(label="Model name") | |
hf_revision_name_textbox = gr.Textbox( | |
label="Revision commit", | |
placeholder="main" | |
) | |
hf_model_type = gr.Dropdown( | |
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
label="Model type", | |
multiselect=False, | |
value=None, | |
interactive=True, | |
) | |
with gr.Column(): | |
hf_precision = gr.Dropdown( | |
choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
label="Precision", | |
multiselect=False, | |
value="float16", | |
interactive=True, | |
) | |
hf_weight_type = gr.Dropdown( | |
choices=[i.value.name for i in WeightType], | |
label="Weights type", | |
multiselect=False, | |
value="Original", | |
interactive=True, | |
) | |
hf_base_model_name_textbox = gr.Textbox( | |
label="Base model (for delta or adapter weights)" | |
) | |
hf_submit_button = gr.Button("Submit Huggingface Model") | |
hf_submission_result = gr.Markdown() | |
# OpenRouter Tab | |
with gr.TabItem("OpenRouter") as openrouter_tab: | |
with gr.Row(): | |
with gr.Column(): | |
or_model_name_textbox = gr.Textbox( | |
label="OpenRouter Model ID" | |
) | |
# Get available themes from EXAM_QUESTIONS | |
from src.evaluation.questions import EXAM_QUESTIONS | |
# Solución para mostrar solo los labels | |
# Creamos un diccionario auxiliar para mapear los nombres visibles a los valores internos | |
theme_label_to_value = {} | |
theme_labels = ["Todos los temas"] # Lista de solo labels para mostrar | |
theme_values = [None] # Lista de valores correspondientes (misma posición) | |
# Rellenamos las listas de labels y values en el mismo orden | |
for theme, questions in EXAM_QUESTIONS.items(): | |
if questions: | |
original_theme = questions[0]["theme"] | |
theme_labels.append(original_theme) # Solo nombre legible | |
theme_values.append(theme) # Valor interno | |
theme_label_to_value[original_theme] = theme # Para mapeo | |
# Función para convertir de label a value cuando se selecciona | |
def convert_theme_selection(label): | |
if label == "Todos los temas" or label is None: | |
return None | |
return theme_label_to_value.get(label) | |
or_theme = gr.Dropdown( | |
choices=theme_labels, # Solo mostramos los labels | |
label="Tema del examen (opcional, por defecto todos)", | |
multiselect=False, | |
interactive=True, | |
value=None | |
) | |
or_model_type = gr.Dropdown( | |
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
label="Model type", | |
multiselect=False, | |
value=None, | |
interactive=True, | |
) | |
with gr.Column(): | |
or_api_key = gr.Textbox( | |
label="OpenRouter API Key", | |
type="password" | |
) | |
or_submit_button = gr.Button("Submit OpenRouter Model") | |
or_submission_result = gr.Markdown() | |
# Replace old submit handler with individual handlers for each tab | |
def hf_submit_handler(model, base_model, revision, precision, weight_type, model_type): | |
return add_new_eval( | |
model=model, | |
base_model=base_model, | |
revision=revision, | |
precision=precision, | |
weight_type=weight_type, | |
model_type=model_type, | |
submit_type="huggingface", | |
openrouter_key=None | |
) | |
def or_submit_handler(model, model_type, openrouter_key, theme_label=None, progress=gr.Progress()): | |
"""OpenRouter submission handler with progress indicator""" | |
# Convertir el label seleccionado al value correspondiente | |
theme_value = convert_theme_selection(theme_label) | |
# Pass theme as parameter to run_exam function via do_exam.py | |
return add_new_eval( | |
model=model, | |
base_model="", | |
revision="openrouter", | |
precision="float16", # Default for API models | |
weight_type="Original", | |
model_type=model_type, | |
submit_type="openrouter", | |
openrouter_key=openrouter_key, | |
exam_theme=theme_value, # Pasar el valor interno, no el label | |
progress=progress, # Añadir el indicador de progreso | |
leaderboard_component=leaderboard # Pasar la referencia al componente leaderboard | |
) | |
# Connect handlers to buttons | |
hf_submit_button.click( | |
hf_submit_handler, | |
inputs=[ | |
hf_model_name_textbox, | |
hf_base_model_name_textbox, | |
hf_revision_name_textbox, | |
hf_precision, | |
hf_weight_type, | |
hf_model_type, | |
], | |
outputs=hf_submission_result, | |
) | |
or_submit_button.click( | |
or_submit_handler, | |
inputs=[ | |
or_model_name_textbox, | |
or_model_type, | |
or_api_key, | |
or_theme, | |
], | |
outputs=or_submission_result, | |
) | |
with gr.Row(): | |
with gr.Accordion("📙 Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() |