Spaces:
Build error
Build error
| # Copyright 2023 TSAIL Team and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver | |
| from dataclasses import dataclass | |
| from typing import List, Optional, Tuple, Union | |
| import flax | |
| import jax | |
| import jax.numpy as jnp | |
| from ..configuration_utils import ConfigMixin, register_to_config | |
| from .scheduling_utils_flax import ( | |
| CommonSchedulerState, | |
| FlaxKarrasDiffusionSchedulers, | |
| FlaxSchedulerMixin, | |
| FlaxSchedulerOutput, | |
| add_noise_common, | |
| ) | |
| class DPMSolverMultistepSchedulerState: | |
| common: CommonSchedulerState | |
| alpha_t: jnp.ndarray | |
| sigma_t: jnp.ndarray | |
| lambda_t: jnp.ndarray | |
| # setable values | |
| init_noise_sigma: jnp.ndarray | |
| timesteps: jnp.ndarray | |
| num_inference_steps: Optional[int] = None | |
| # running values | |
| model_outputs: Optional[jnp.ndarray] = None | |
| lower_order_nums: Optional[jnp.int32] = None | |
| prev_timestep: Optional[jnp.int32] = None | |
| cur_sample: Optional[jnp.ndarray] = None | |
| def create( | |
| cls, | |
| common: CommonSchedulerState, | |
| alpha_t: jnp.ndarray, | |
| sigma_t: jnp.ndarray, | |
| lambda_t: jnp.ndarray, | |
| init_noise_sigma: jnp.ndarray, | |
| timesteps: jnp.ndarray, | |
| ): | |
| return cls( | |
| common=common, | |
| alpha_t=alpha_t, | |
| sigma_t=sigma_t, | |
| lambda_t=lambda_t, | |
| init_noise_sigma=init_noise_sigma, | |
| timesteps=timesteps, | |
| ) | |
| class FlaxDPMSolverMultistepSchedulerOutput(FlaxSchedulerOutput): | |
| state: DPMSolverMultistepSchedulerState | |
| class FlaxDPMSolverMultistepScheduler(FlaxSchedulerMixin, ConfigMixin): | |
| """ | |
| DPM-Solver (and the improved version DPM-Solver++) is a fast dedicated high-order solver for diffusion ODEs with | |
| the convergence order guarantee. Empirically, sampling by DPM-Solver with only 20 steps can generate high-quality | |
| samples, and it can generate quite good samples even in only 10 steps. | |
| For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095 | |
| Currently, we support the multistep DPM-Solver for both noise prediction models and data prediction models. We | |
| recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. | |
| We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space | |
| diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic | |
| thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as | |
| stable-diffusion). | |
| [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | |
| function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | |
| [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and | |
| [`~SchedulerMixin.from_pretrained`] functions. | |
| For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095 | |
| Args: | |
| num_train_timesteps (`int`): number of diffusion steps used to train the model. | |
| beta_start (`float`): the starting `beta` value of inference. | |
| beta_end (`float`): the final `beta` value. | |
| beta_schedule (`str`): | |
| the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | |
| `linear`, `scaled_linear`, or `squaredcos_cap_v2`. | |
| trained_betas (`np.ndarray`, optional): | |
| option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. | |
| solver_order (`int`, default `2`): | |
| the order of DPM-Solver; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided | |
| sampling, and `solver_order=3` for unconditional sampling. | |
| prediction_type (`str`, default `epsilon`): | |
| indicates whether the model predicts the noise (epsilon), or the data / `x0`. One of `epsilon`, `sample`, | |
| or `v-prediction`. | |
| thresholding (`bool`, default `False`): | |
| whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487). | |
| For pixel-space diffusion models, you can set both `algorithm_type=dpmsolver++` and `thresholding=True` to | |
| use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion | |
| models (such as stable-diffusion). | |
| dynamic_thresholding_ratio (`float`, default `0.995`): | |
| the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen | |
| (https://arxiv.org/abs/2205.11487). | |
| sample_max_value (`float`, default `1.0`): | |
| the threshold value for dynamic thresholding. Valid only when `thresholding=True` and | |
| `algorithm_type="dpmsolver++`. | |
| algorithm_type (`str`, default `dpmsolver++`): | |
| the algorithm type for the solver. Either `dpmsolver` or `dpmsolver++`. The `dpmsolver` type implements the | |
| algorithms in https://arxiv.org/abs/2206.00927, and the `dpmsolver++` type implements the algorithms in | |
| https://arxiv.org/abs/2211.01095. We recommend to use `dpmsolver++` with `solver_order=2` for guided | |
| sampling (e.g. stable-diffusion). | |
| solver_type (`str`, default `midpoint`): | |
| the solver type for the second-order solver. Either `midpoint` or `heun`. The solver type slightly affects | |
| the sample quality, especially for small number of steps. We empirically find that `midpoint` solvers are | |
| slightly better, so we recommend to use the `midpoint` type. | |
| lower_order_final (`bool`, default `True`): | |
| whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically | |
| find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10. | |
| dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`): | |
| the `dtype` used for params and computation. | |
| """ | |
| _compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers] | |
| dtype: jnp.dtype | |
| def has_state(self): | |
| return True | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1000, | |
| beta_start: float = 0.0001, | |
| beta_end: float = 0.02, | |
| beta_schedule: str = "linear", | |
| trained_betas: Optional[jnp.ndarray] = None, | |
| solver_order: int = 2, | |
| prediction_type: str = "epsilon", | |
| thresholding: bool = False, | |
| dynamic_thresholding_ratio: float = 0.995, | |
| sample_max_value: float = 1.0, | |
| algorithm_type: str = "dpmsolver++", | |
| solver_type: str = "midpoint", | |
| lower_order_final: bool = True, | |
| dtype: jnp.dtype = jnp.float32, | |
| ): | |
| self.dtype = dtype | |
| def create_state(self, common: Optional[CommonSchedulerState] = None) -> DPMSolverMultistepSchedulerState: | |
| if common is None: | |
| common = CommonSchedulerState.create(self) | |
| # Currently we only support VP-type noise schedule | |
| alpha_t = jnp.sqrt(common.alphas_cumprod) | |
| sigma_t = jnp.sqrt(1 - common.alphas_cumprod) | |
| lambda_t = jnp.log(alpha_t) - jnp.log(sigma_t) | |
| # settings for DPM-Solver | |
| if self.config.algorithm_type not in ["dpmsolver", "dpmsolver++"]: | |
| raise NotImplementedError(f"{self.config.algorithm_type} does is not implemented for {self.__class__}") | |
| if self.config.solver_type not in ["midpoint", "heun"]: | |
| raise NotImplementedError(f"{self.config.solver_type} does is not implemented for {self.__class__}") | |
| # standard deviation of the initial noise distribution | |
| init_noise_sigma = jnp.array(1.0, dtype=self.dtype) | |
| timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1] | |
| return DPMSolverMultistepSchedulerState.create( | |
| common=common, | |
| alpha_t=alpha_t, | |
| sigma_t=sigma_t, | |
| lambda_t=lambda_t, | |
| init_noise_sigma=init_noise_sigma, | |
| timesteps=timesteps, | |
| ) | |
| def set_timesteps( | |
| self, state: DPMSolverMultistepSchedulerState, num_inference_steps: int, shape: Tuple | |
| ) -> DPMSolverMultistepSchedulerState: | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. | |
| Args: | |
| state (`DPMSolverMultistepSchedulerState`): | |
| the `FlaxDPMSolverMultistepScheduler` state data class instance. | |
| num_inference_steps (`int`): | |
| the number of diffusion steps used when generating samples with a pre-trained model. | |
| shape (`Tuple`): | |
| the shape of the samples to be generated. | |
| """ | |
| timesteps = ( | |
| jnp.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1) | |
| .round()[::-1][:-1] | |
| .astype(jnp.int32) | |
| ) | |
| # initial running values | |
| model_outputs = jnp.zeros((self.config.solver_order,) + shape, dtype=self.dtype) | |
| lower_order_nums = jnp.int32(0) | |
| prev_timestep = jnp.int32(-1) | |
| cur_sample = jnp.zeros(shape, dtype=self.dtype) | |
| return state.replace( | |
| num_inference_steps=num_inference_steps, | |
| timesteps=timesteps, | |
| model_outputs=model_outputs, | |
| lower_order_nums=lower_order_nums, | |
| prev_timestep=prev_timestep, | |
| cur_sample=cur_sample, | |
| ) | |
| def convert_model_output( | |
| self, | |
| state: DPMSolverMultistepSchedulerState, | |
| model_output: jnp.ndarray, | |
| timestep: int, | |
| sample: jnp.ndarray, | |
| ) -> jnp.ndarray: | |
| """ | |
| Convert the model output to the corresponding type that the algorithm (DPM-Solver / DPM-Solver++) needs. | |
| DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to | |
| discretize an integral of the data prediction model. So we need to first convert the model output to the | |
| corresponding type to match the algorithm. | |
| Note that the algorithm type and the model type is decoupled. That is to say, we can use either DPM-Solver or | |
| DPM-Solver++ for both noise prediction model and data prediction model. | |
| Args: | |
| model_output (`jnp.ndarray`): direct output from learned diffusion model. | |
| timestep (`int`): current discrete timestep in the diffusion chain. | |
| sample (`jnp.ndarray`): | |
| current instance of sample being created by diffusion process. | |
| Returns: | |
| `jnp.ndarray`: the converted model output. | |
| """ | |
| # DPM-Solver++ needs to solve an integral of the data prediction model. | |
| if self.config.algorithm_type == "dpmsolver++": | |
| if self.config.prediction_type == "epsilon": | |
| alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep] | |
| x0_pred = (sample - sigma_t * model_output) / alpha_t | |
| elif self.config.prediction_type == "sample": | |
| x0_pred = model_output | |
| elif self.config.prediction_type == "v_prediction": | |
| alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep] | |
| x0_pred = alpha_t * sample - sigma_t * model_output | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, " | |
| " or `v_prediction` for the FlaxDPMSolverMultistepScheduler." | |
| ) | |
| if self.config.thresholding: | |
| # Dynamic thresholding in https://arxiv.org/abs/2205.11487 | |
| dynamic_max_val = jnp.percentile( | |
| jnp.abs(x0_pred), self.config.dynamic_thresholding_ratio, axis=tuple(range(1, x0_pred.ndim)) | |
| ) | |
| dynamic_max_val = jnp.maximum( | |
| dynamic_max_val, self.config.sample_max_value * jnp.ones_like(dynamic_max_val) | |
| ) | |
| x0_pred = jnp.clip(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val | |
| return x0_pred | |
| # DPM-Solver needs to solve an integral of the noise prediction model. | |
| elif self.config.algorithm_type == "dpmsolver": | |
| if self.config.prediction_type == "epsilon": | |
| return model_output | |
| elif self.config.prediction_type == "sample": | |
| alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep] | |
| epsilon = (sample - alpha_t * model_output) / sigma_t | |
| return epsilon | |
| elif self.config.prediction_type == "v_prediction": | |
| alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep] | |
| epsilon = alpha_t * model_output + sigma_t * sample | |
| return epsilon | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, " | |
| " or `v_prediction` for the FlaxDPMSolverMultistepScheduler." | |
| ) | |
| def dpm_solver_first_order_update( | |
| self, | |
| state: DPMSolverMultistepSchedulerState, | |
| model_output: jnp.ndarray, | |
| timestep: int, | |
| prev_timestep: int, | |
| sample: jnp.ndarray, | |
| ) -> jnp.ndarray: | |
| """ | |
| One step for the first-order DPM-Solver (equivalent to DDIM). | |
| See https://arxiv.org/abs/2206.00927 for the detailed derivation. | |
| Args: | |
| model_output (`jnp.ndarray`): direct output from learned diffusion model. | |
| timestep (`int`): current discrete timestep in the diffusion chain. | |
| prev_timestep (`int`): previous discrete timestep in the diffusion chain. | |
| sample (`jnp.ndarray`): | |
| current instance of sample being created by diffusion process. | |
| Returns: | |
| `jnp.ndarray`: the sample tensor at the previous timestep. | |
| """ | |
| t, s0 = prev_timestep, timestep | |
| m0 = model_output | |
| lambda_t, lambda_s = state.lambda_t[t], state.lambda_t[s0] | |
| alpha_t, alpha_s = state.alpha_t[t], state.alpha_t[s0] | |
| sigma_t, sigma_s = state.sigma_t[t], state.sigma_t[s0] | |
| h = lambda_t - lambda_s | |
| if self.config.algorithm_type == "dpmsolver++": | |
| x_t = (sigma_t / sigma_s) * sample - (alpha_t * (jnp.exp(-h) - 1.0)) * m0 | |
| elif self.config.algorithm_type == "dpmsolver": | |
| x_t = (alpha_t / alpha_s) * sample - (sigma_t * (jnp.exp(h) - 1.0)) * m0 | |
| return x_t | |
| def multistep_dpm_solver_second_order_update( | |
| self, | |
| state: DPMSolverMultistepSchedulerState, | |
| model_output_list: jnp.ndarray, | |
| timestep_list: List[int], | |
| prev_timestep: int, | |
| sample: jnp.ndarray, | |
| ) -> jnp.ndarray: | |
| """ | |
| One step for the second-order multistep DPM-Solver. | |
| Args: | |
| model_output_list (`List[jnp.ndarray]`): | |
| direct outputs from learned diffusion model at current and latter timesteps. | |
| timestep (`int`): current and latter discrete timestep in the diffusion chain. | |
| prev_timestep (`int`): previous discrete timestep in the diffusion chain. | |
| sample (`jnp.ndarray`): | |
| current instance of sample being created by diffusion process. | |
| Returns: | |
| `jnp.ndarray`: the sample tensor at the previous timestep. | |
| """ | |
| t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2] | |
| m0, m1 = model_output_list[-1], model_output_list[-2] | |
| lambda_t, lambda_s0, lambda_s1 = state.lambda_t[t], state.lambda_t[s0], state.lambda_t[s1] | |
| alpha_t, alpha_s0 = state.alpha_t[t], state.alpha_t[s0] | |
| sigma_t, sigma_s0 = state.sigma_t[t], state.sigma_t[s0] | |
| h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 | |
| r0 = h_0 / h | |
| D0, D1 = m0, (1.0 / r0) * (m0 - m1) | |
| if self.config.algorithm_type == "dpmsolver++": | |
| # See https://arxiv.org/abs/2211.01095 for detailed derivations | |
| if self.config.solver_type == "midpoint": | |
| x_t = ( | |
| (sigma_t / sigma_s0) * sample | |
| - (alpha_t * (jnp.exp(-h) - 1.0)) * D0 | |
| - 0.5 * (alpha_t * (jnp.exp(-h) - 1.0)) * D1 | |
| ) | |
| elif self.config.solver_type == "heun": | |
| x_t = ( | |
| (sigma_t / sigma_s0) * sample | |
| - (alpha_t * (jnp.exp(-h) - 1.0)) * D0 | |
| + (alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0)) * D1 | |
| ) | |
| elif self.config.algorithm_type == "dpmsolver": | |
| # See https://arxiv.org/abs/2206.00927 for detailed derivations | |
| if self.config.solver_type == "midpoint": | |
| x_t = ( | |
| (alpha_t / alpha_s0) * sample | |
| - (sigma_t * (jnp.exp(h) - 1.0)) * D0 | |
| - 0.5 * (sigma_t * (jnp.exp(h) - 1.0)) * D1 | |
| ) | |
| elif self.config.solver_type == "heun": | |
| x_t = ( | |
| (alpha_t / alpha_s0) * sample | |
| - (sigma_t * (jnp.exp(h) - 1.0)) * D0 | |
| - (sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0)) * D1 | |
| ) | |
| return x_t | |
| def multistep_dpm_solver_third_order_update( | |
| self, | |
| state: DPMSolverMultistepSchedulerState, | |
| model_output_list: jnp.ndarray, | |
| timestep_list: List[int], | |
| prev_timestep: int, | |
| sample: jnp.ndarray, | |
| ) -> jnp.ndarray: | |
| """ | |
| One step for the third-order multistep DPM-Solver. | |
| Args: | |
| model_output_list (`List[jnp.ndarray]`): | |
| direct outputs from learned diffusion model at current and latter timesteps. | |
| timestep (`int`): current and latter discrete timestep in the diffusion chain. | |
| prev_timestep (`int`): previous discrete timestep in the diffusion chain. | |
| sample (`jnp.ndarray`): | |
| current instance of sample being created by diffusion process. | |
| Returns: | |
| `jnp.ndarray`: the sample tensor at the previous timestep. | |
| """ | |
| t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3] | |
| m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] | |
| lambda_t, lambda_s0, lambda_s1, lambda_s2 = ( | |
| state.lambda_t[t], | |
| state.lambda_t[s0], | |
| state.lambda_t[s1], | |
| state.lambda_t[s2], | |
| ) | |
| alpha_t, alpha_s0 = state.alpha_t[t], state.alpha_t[s0] | |
| sigma_t, sigma_s0 = state.sigma_t[t], state.sigma_t[s0] | |
| h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2 | |
| r0, r1 = h_0 / h, h_1 / h | |
| D0 = m0 | |
| D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2) | |
| D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1) | |
| D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1) | |
| if self.config.algorithm_type == "dpmsolver++": | |
| # See https://arxiv.org/abs/2206.00927 for detailed derivations | |
| x_t = ( | |
| (sigma_t / sigma_s0) * sample | |
| - (alpha_t * (jnp.exp(-h) - 1.0)) * D0 | |
| + (alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0)) * D1 | |
| - (alpha_t * ((jnp.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2 | |
| ) | |
| elif self.config.algorithm_type == "dpmsolver": | |
| # See https://arxiv.org/abs/2206.00927 for detailed derivations | |
| x_t = ( | |
| (alpha_t / alpha_s0) * sample | |
| - (sigma_t * (jnp.exp(h) - 1.0)) * D0 | |
| - (sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0)) * D1 | |
| - (sigma_t * ((jnp.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2 | |
| ) | |
| return x_t | |
| def step( | |
| self, | |
| state: DPMSolverMultistepSchedulerState, | |
| model_output: jnp.ndarray, | |
| timestep: int, | |
| sample: jnp.ndarray, | |
| return_dict: bool = True, | |
| ) -> Union[FlaxDPMSolverMultistepSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample at the previous timestep by DPM-Solver. Core function to propagate the diffusion process | |
| from the learned model outputs (most often the predicted noise). | |
| Args: | |
| state (`DPMSolverMultistepSchedulerState`): | |
| the `FlaxDPMSolverMultistepScheduler` state data class instance. | |
| model_output (`jnp.ndarray`): direct output from learned diffusion model. | |
| timestep (`int`): current discrete timestep in the diffusion chain. | |
| sample (`jnp.ndarray`): | |
| current instance of sample being created by diffusion process. | |
| return_dict (`bool`): option for returning tuple rather than FlaxDPMSolverMultistepSchedulerOutput class | |
| Returns: | |
| [`FlaxDPMSolverMultistepSchedulerOutput`] or `tuple`: [`FlaxDPMSolverMultistepSchedulerOutput`] if | |
| `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. | |
| """ | |
| if state.num_inference_steps is None: | |
| raise ValueError( | |
| "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
| ) | |
| (step_index,) = jnp.where(state.timesteps == timestep, size=1) | |
| step_index = step_index[0] | |
| prev_timestep = jax.lax.select(step_index == len(state.timesteps) - 1, 0, state.timesteps[step_index + 1]) | |
| model_output = self.convert_model_output(state, model_output, timestep, sample) | |
| model_outputs_new = jnp.roll(state.model_outputs, -1, axis=0) | |
| model_outputs_new = model_outputs_new.at[-1].set(model_output) | |
| state = state.replace( | |
| model_outputs=model_outputs_new, | |
| prev_timestep=prev_timestep, | |
| cur_sample=sample, | |
| ) | |
| def step_1(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: | |
| return self.dpm_solver_first_order_update( | |
| state, | |
| state.model_outputs[-1], | |
| state.timesteps[step_index], | |
| state.prev_timestep, | |
| state.cur_sample, | |
| ) | |
| def step_23(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: | |
| def step_2(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: | |
| timestep_list = jnp.array([state.timesteps[step_index - 1], state.timesteps[step_index]]) | |
| return self.multistep_dpm_solver_second_order_update( | |
| state, | |
| state.model_outputs, | |
| timestep_list, | |
| state.prev_timestep, | |
| state.cur_sample, | |
| ) | |
| def step_3(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: | |
| timestep_list = jnp.array( | |
| [ | |
| state.timesteps[step_index - 2], | |
| state.timesteps[step_index - 1], | |
| state.timesteps[step_index], | |
| ] | |
| ) | |
| return self.multistep_dpm_solver_third_order_update( | |
| state, | |
| state.model_outputs, | |
| timestep_list, | |
| state.prev_timestep, | |
| state.cur_sample, | |
| ) | |
| step_2_output = step_2(state) | |
| step_3_output = step_3(state) | |
| if self.config.solver_order == 2: | |
| return step_2_output | |
| elif self.config.lower_order_final and len(state.timesteps) < 15: | |
| return jax.lax.select( | |
| state.lower_order_nums < 2, | |
| step_2_output, | |
| jax.lax.select( | |
| step_index == len(state.timesteps) - 2, | |
| step_2_output, | |
| step_3_output, | |
| ), | |
| ) | |
| else: | |
| return jax.lax.select( | |
| state.lower_order_nums < 2, | |
| step_2_output, | |
| step_3_output, | |
| ) | |
| step_1_output = step_1(state) | |
| step_23_output = step_23(state) | |
| if self.config.solver_order == 1: | |
| prev_sample = step_1_output | |
| elif self.config.lower_order_final and len(state.timesteps) < 15: | |
| prev_sample = jax.lax.select( | |
| state.lower_order_nums < 1, | |
| step_1_output, | |
| jax.lax.select( | |
| step_index == len(state.timesteps) - 1, | |
| step_1_output, | |
| step_23_output, | |
| ), | |
| ) | |
| else: | |
| prev_sample = jax.lax.select( | |
| state.lower_order_nums < 1, | |
| step_1_output, | |
| step_23_output, | |
| ) | |
| state = state.replace( | |
| lower_order_nums=jnp.minimum(state.lower_order_nums + 1, self.config.solver_order), | |
| ) | |
| if not return_dict: | |
| return (prev_sample, state) | |
| return FlaxDPMSolverMultistepSchedulerOutput(prev_sample=prev_sample, state=state) | |
| def scale_model_input( | |
| self, state: DPMSolverMultistepSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None | |
| ) -> jnp.ndarray: | |
| """ | |
| Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
| current timestep. | |
| Args: | |
| state (`DPMSolverMultistepSchedulerState`): | |
| the `FlaxDPMSolverMultistepScheduler` state data class instance. | |
| sample (`jnp.ndarray`): input sample | |
| timestep (`int`, optional): current timestep | |
| Returns: | |
| `jnp.ndarray`: scaled input sample | |
| """ | |
| return sample | |
| def add_noise( | |
| self, | |
| state: DPMSolverMultistepSchedulerState, | |
| original_samples: jnp.ndarray, | |
| noise: jnp.ndarray, | |
| timesteps: jnp.ndarray, | |
| ) -> jnp.ndarray: | |
| return add_noise_common(state.common, original_samples, noise, timesteps) | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |