Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	add required files
Browse filesThis view is limited to 50 files because it contains too many changes.  
							See raw diff
- app.py +1 -1
 - audioldm/__init__.py +8 -0
 - audioldm/__main__.py +183 -0
 - audioldm/__pycache__/__init__.cpython-39.pyc +0 -0
 - audioldm/__pycache__/ldm.cpython-39.pyc +0 -0
 - audioldm/__pycache__/pipeline.cpython-39.pyc +0 -0
 - audioldm/__pycache__/utils.cpython-39.pyc +0 -0
 - audioldm/audio/__init__.py +2 -0
 - audioldm/audio/__pycache__/__init__.cpython-39.pyc +0 -0
 - audioldm/audio/__pycache__/audio_processing.cpython-39.pyc +0 -0
 - audioldm/audio/__pycache__/mix.cpython-39.pyc +0 -0
 - audioldm/audio/__pycache__/stft.cpython-39.pyc +0 -0
 - audioldm/audio/__pycache__/tools.cpython-39.pyc +0 -0
 - audioldm/audio/__pycache__/torch_tools.cpython-39.pyc +0 -0
 - audioldm/audio/audio_processing.py +100 -0
 - audioldm/audio/stft.py +186 -0
 - audioldm/audio/tools.py +85 -0
 - audioldm/hifigan/__init__.py +7 -0
 - audioldm/hifigan/__pycache__/__init__.cpython-39.pyc +0 -0
 - audioldm/hifigan/__pycache__/models.cpython-39.pyc +0 -0
 - audioldm/hifigan/__pycache__/utilities.cpython-39.pyc +0 -0
 - audioldm/hifigan/models.py +174 -0
 - audioldm/hifigan/utilities.py +86 -0
 - audioldm/latent_diffusion/__init__.py +0 -0
 - audioldm/latent_diffusion/__pycache__/__init__.cpython-39.pyc +0 -0
 - audioldm/latent_diffusion/__pycache__/attention.cpython-39.pyc +0 -0
 - audioldm/latent_diffusion/__pycache__/ddim.cpython-39.pyc +0 -0
 - audioldm/latent_diffusion/__pycache__/ddpm.cpython-39.pyc +0 -0
 - audioldm/latent_diffusion/__pycache__/ema.cpython-39.pyc +0 -0
 - audioldm/latent_diffusion/__pycache__/openaimodel.cpython-39.pyc +0 -0
 - audioldm/latent_diffusion/__pycache__/util.cpython-39.pyc +0 -0
 - audioldm/latent_diffusion/attention.py +469 -0
 - audioldm/latent_diffusion/ddim.py +377 -0
 - audioldm/latent_diffusion/ddpm.py +441 -0
 - audioldm/latent_diffusion/ema.py +82 -0
 - audioldm/latent_diffusion/openaimodel.py +1069 -0
 - audioldm/latent_diffusion/util.py +295 -0
 - audioldm/ldm.py +818 -0
 - audioldm/pipeline.py +301 -0
 - audioldm/utils.py +281 -0
 - audioldm/variational_autoencoder/__init__.py +1 -0
 - audioldm/variational_autoencoder/__pycache__/__init__.cpython-39.pyc +0 -0
 - audioldm/variational_autoencoder/__pycache__/autoencoder.cpython-39.pyc +0 -0
 - audioldm/variational_autoencoder/__pycache__/distributions.cpython-39.pyc +0 -0
 - audioldm/variational_autoencoder/__pycache__/modules.cpython-39.pyc +0 -0
 - audioldm/variational_autoencoder/autoencoder.py +135 -0
 - audioldm/variational_autoencoder/distributions.py +102 -0
 - audioldm/variational_autoencoder/modules.py +1066 -0
 - diffusers/CITATION.cff +40 -0
 - diffusers/CODE_OF_CONDUCT.md +130 -0
 
    	
        app.py
    CHANGED
    
    | 
         @@ -94,7 +94,7 @@ gr_interface = gr.Interface( 
     | 
|
| 94 | 
         
             
                inputs=input_text,
         
     | 
| 95 | 
         
             
                outputs=[output_audio],
         
     | 
| 96 | 
         
             
                title="Tango Audio Generator",
         
     | 
| 97 | 
         
            -
                description="Generate audio using Tango  
     | 
| 98 | 
         
             
                allow_flagging=False,
         
     | 
| 99 | 
         
             
                    examples=[
         
     | 
| 100 | 
         
             
                    ["A Dog Barking"],
         
     | 
| 
         | 
|
| 94 | 
         
             
                inputs=input_text,
         
     | 
| 95 | 
         
             
                outputs=[output_audio],
         
     | 
| 96 | 
         
             
                title="Tango Audio Generator",
         
     | 
| 97 | 
         
            +
                description="Generate audio using Tango by providing a text prompt.",
         
     | 
| 98 | 
         
             
                allow_flagging=False,
         
     | 
| 99 | 
         
             
                    examples=[
         
     | 
| 100 | 
         
             
                    ["A Dog Barking"],
         
     | 
    	
        audioldm/__init__.py
    ADDED
    
    | 
         @@ -0,0 +1,8 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from .ldm import LatentDiffusion
         
     | 
| 2 | 
         
            +
            from .utils import seed_everything, save_wave, get_time, get_duration
         
     | 
| 3 | 
         
            +
            from .pipeline import *
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
             
     | 
    	
        audioldm/__main__.py
    ADDED
    
    | 
         @@ -0,0 +1,183 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #!/usr/bin/python3
         
     | 
| 2 | 
         
            +
            import os
         
     | 
| 3 | 
         
            +
            from audioldm import text_to_audio, style_transfer, build_model, save_wave, get_time, round_up_duration, get_duration
         
     | 
| 4 | 
         
            +
            import argparse
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            CACHE_DIR = os.getenv(
         
     | 
| 7 | 
         
            +
                "AUDIOLDM_CACHE_DIR",
         
     | 
| 8 | 
         
            +
                os.path.join(os.path.expanduser("~"), ".cache/audioldm"))
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            parser = argparse.ArgumentParser()
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            parser.add_argument(
         
     | 
| 13 | 
         
            +
                "--mode",
         
     | 
| 14 | 
         
            +
                type=str,
         
     | 
| 15 | 
         
            +
                required=False,
         
     | 
| 16 | 
         
            +
                default="generation",
         
     | 
| 17 | 
         
            +
                help="generation: text-to-audio generation; transfer: style transfer",
         
     | 
| 18 | 
         
            +
                choices=["generation", "transfer"]
         
     | 
| 19 | 
         
            +
            )
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            parser.add_argument(
         
     | 
| 22 | 
         
            +
                "-t",
         
     | 
| 23 | 
         
            +
                "--text",
         
     | 
| 24 | 
         
            +
                type=str,
         
     | 
| 25 | 
         
            +
                required=False,
         
     | 
| 26 | 
         
            +
                default="",
         
     | 
| 27 | 
         
            +
                help="Text prompt to the model for audio generation",
         
     | 
| 28 | 
         
            +
            )
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            parser.add_argument(
         
     | 
| 31 | 
         
            +
                "-f",
         
     | 
| 32 | 
         
            +
                "--file_path",
         
     | 
| 33 | 
         
            +
                type=str,
         
     | 
| 34 | 
         
            +
                required=False,
         
     | 
| 35 | 
         
            +
                default=None,
         
     | 
| 36 | 
         
            +
                help="(--mode transfer): Original audio file for style transfer; Or (--mode generation): the guidance audio file for generating simialr audio",
         
     | 
| 37 | 
         
            +
            )
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            parser.add_argument(
         
     | 
| 40 | 
         
            +
                "--transfer_strength",
         
     | 
| 41 | 
         
            +
                type=float,
         
     | 
| 42 | 
         
            +
                required=False,
         
     | 
| 43 | 
         
            +
                default=0.5,
         
     | 
| 44 | 
         
            +
                help="A value between 0 and 1. 0 means original audio without transfer, 1 means completely transfer to the audio indicated by text",
         
     | 
| 45 | 
         
            +
            )
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            parser.add_argument(
         
     | 
| 48 | 
         
            +
                "-s",
         
     | 
| 49 | 
         
            +
                "--save_path",
         
     | 
| 50 | 
         
            +
                type=str,
         
     | 
| 51 | 
         
            +
                required=False,
         
     | 
| 52 | 
         
            +
                help="The path to save model output",
         
     | 
| 53 | 
         
            +
                default="./output",
         
     | 
| 54 | 
         
            +
            )
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
            parser.add_argument(
         
     | 
| 57 | 
         
            +
                "--model_name",
         
     | 
| 58 | 
         
            +
                type=str,
         
     | 
| 59 | 
         
            +
                required=False,
         
     | 
| 60 | 
         
            +
                help="The checkpoint you gonna use",
         
     | 
| 61 | 
         
            +
                default="audioldm-s-full",
         
     | 
| 62 | 
         
            +
                choices=["audioldm-s-full", "audioldm-l-full", "audioldm-s-full-v2"]
         
     | 
| 63 | 
         
            +
            )
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
            parser.add_argument(
         
     | 
| 66 | 
         
            +
                "-ckpt",
         
     | 
| 67 | 
         
            +
                "--ckpt_path",
         
     | 
| 68 | 
         
            +
                type=str,
         
     | 
| 69 | 
         
            +
                required=False,
         
     | 
| 70 | 
         
            +
                help="The path to the pretrained .ckpt model",
         
     | 
| 71 | 
         
            +
                default=None,
         
     | 
| 72 | 
         
            +
            )
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
            parser.add_argument(
         
     | 
| 75 | 
         
            +
                "-b",
         
     | 
| 76 | 
         
            +
                "--batchsize",
         
     | 
| 77 | 
         
            +
                type=int,
         
     | 
| 78 | 
         
            +
                required=False,
         
     | 
| 79 | 
         
            +
                default=1,
         
     | 
| 80 | 
         
            +
                help="Generate how many samples at the same time",
         
     | 
| 81 | 
         
            +
            )
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
            parser.add_argument(
         
     | 
| 84 | 
         
            +
                "--ddim_steps",
         
     | 
| 85 | 
         
            +
                type=int,
         
     | 
| 86 | 
         
            +
                required=False,
         
     | 
| 87 | 
         
            +
                default=200,
         
     | 
| 88 | 
         
            +
                help="The sampling step for DDIM",
         
     | 
| 89 | 
         
            +
            )
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
            parser.add_argument(
         
     | 
| 92 | 
         
            +
                "-gs",
         
     | 
| 93 | 
         
            +
                "--guidance_scale",
         
     | 
| 94 | 
         
            +
                type=float,
         
     | 
| 95 | 
         
            +
                required=False,
         
     | 
| 96 | 
         
            +
                default=2.5,
         
     | 
| 97 | 
         
            +
                help="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)",
         
     | 
| 98 | 
         
            +
            )
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
            parser.add_argument(
         
     | 
| 101 | 
         
            +
                "-dur",
         
     | 
| 102 | 
         
            +
                "--duration",
         
     | 
| 103 | 
         
            +
                type=float,
         
     | 
| 104 | 
         
            +
                required=False,
         
     | 
| 105 | 
         
            +
                default=10.0,
         
     | 
| 106 | 
         
            +
                help="The duration of the samples",
         
     | 
| 107 | 
         
            +
            )
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
            parser.add_argument(
         
     | 
| 110 | 
         
            +
                "-n",
         
     | 
| 111 | 
         
            +
                "--n_candidate_gen_per_text",
         
     | 
| 112 | 
         
            +
                type=int,
         
     | 
| 113 | 
         
            +
                required=False,
         
     | 
| 114 | 
         
            +
                default=3,
         
     | 
| 115 | 
         
            +
                help="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation",
         
     | 
| 116 | 
         
            +
            )
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
            parser.add_argument(
         
     | 
| 119 | 
         
            +
                "--seed",
         
     | 
| 120 | 
         
            +
                type=int,
         
     | 
| 121 | 
         
            +
                required=False,
         
     | 
| 122 | 
         
            +
                default=42,
         
     | 
| 123 | 
         
            +
                help="Change this value (any integer number) will lead to a different generation result.",
         
     | 
| 124 | 
         
            +
            )
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
            args = parser.parse_args()
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
            if(args.ckpt_path is not None):
         
     | 
| 129 | 
         
            +
                print("Warning: ckpt_path has no effect after version 0.0.20.")
         
     | 
| 130 | 
         
            +
                
         
     | 
| 131 | 
         
            +
            assert args.duration % 2.5 == 0, "Duration must be a multiple of 2.5"
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
            mode = args.mode
         
     | 
| 134 | 
         
            +
            if(mode == "generation" and args.file_path is not None):
         
     | 
| 135 | 
         
            +
                mode = "generation_audio_to_audio"
         
     | 
| 136 | 
         
            +
                if(len(args.text) > 0):
         
     | 
| 137 | 
         
            +
                    print("Warning: You have specified the --file_path. --text will be ignored")
         
     | 
| 138 | 
         
            +
                    args.text = ""
         
     | 
| 139 | 
         
            +
                    
         
     | 
| 140 | 
         
            +
            save_path = os.path.join(args.save_path, mode)
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
            if(args.file_path is not None):
         
     | 
| 143 | 
         
            +
                save_path = os.path.join(save_path, os.path.basename(args.file_path.split(".")[0]))
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
            text = args.text
         
     | 
| 146 | 
         
            +
            random_seed = args.seed
         
     | 
| 147 | 
         
            +
            duration = args.duration
         
     | 
| 148 | 
         
            +
            guidance_scale = args.guidance_scale
         
     | 
| 149 | 
         
            +
            n_candidate_gen_per_text = args.n_candidate_gen_per_text
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
            os.makedirs(save_path, exist_ok=True)
         
     | 
| 152 | 
         
            +
            audioldm = build_model(model_name=args.model_name)
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
            if(args.mode == "generation"):
         
     | 
| 155 | 
         
            +
                waveform = text_to_audio(
         
     | 
| 156 | 
         
            +
                    audioldm,
         
     | 
| 157 | 
         
            +
                    text,
         
     | 
| 158 | 
         
            +
                    args.file_path,
         
     | 
| 159 | 
         
            +
                    random_seed,
         
     | 
| 160 | 
         
            +
                    duration=duration,
         
     | 
| 161 | 
         
            +
                    guidance_scale=guidance_scale,
         
     | 
| 162 | 
         
            +
                    ddim_steps=args.ddim_steps,
         
     | 
| 163 | 
         
            +
                    n_candidate_gen_per_text=n_candidate_gen_per_text,
         
     | 
| 164 | 
         
            +
                    batchsize=args.batchsize,
         
     | 
| 165 | 
         
            +
                )
         
     | 
| 166 | 
         
            +
                
         
     | 
| 167 | 
         
            +
            elif(args.mode == "transfer"):
         
     | 
| 168 | 
         
            +
                assert args.file_path is not None
         
     | 
| 169 | 
         
            +
                assert os.path.exists(args.file_path), "The original audio file \'%s\' for style transfer does not exist." % args.file_path
         
     | 
| 170 | 
         
            +
                waveform = style_transfer(
         
     | 
| 171 | 
         
            +
                    audioldm,
         
     | 
| 172 | 
         
            +
                    text,
         
     | 
| 173 | 
         
            +
                    args.file_path,
         
     | 
| 174 | 
         
            +
                    args.transfer_strength,
         
     | 
| 175 | 
         
            +
                    random_seed,
         
     | 
| 176 | 
         
            +
                    duration=duration,
         
     | 
| 177 | 
         
            +
                    guidance_scale=guidance_scale,
         
     | 
| 178 | 
         
            +
                    ddim_steps=args.ddim_steps,
         
     | 
| 179 | 
         
            +
                    batchsize=args.batchsize,
         
     | 
| 180 | 
         
            +
                )
         
     | 
| 181 | 
         
            +
                waveform = waveform[:,None,:]
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
            save_wave(waveform, save_path, name="%s_%s" % (get_time(), text))
         
     | 
    	
        audioldm/__pycache__/__init__.cpython-39.pyc
    ADDED
    
    | 
         Binary file (322 Bytes). View file 
     | 
| 
         | 
    	
        audioldm/__pycache__/ldm.cpython-39.pyc
    ADDED
    
    | 
         Binary file (16 kB). View file 
     | 
| 
         | 
    	
        audioldm/__pycache__/pipeline.cpython-39.pyc
    ADDED
    
    | 
         Binary file (6.54 kB). View file 
     | 
| 
         | 
    	
        audioldm/__pycache__/utils.cpython-39.pyc
    ADDED
    
    | 
         Binary file (7.35 kB). View file 
     | 
| 
         | 
    	
        audioldm/audio/__init__.py
    ADDED
    
    | 
         @@ -0,0 +1,2 @@ 
     | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from .tools import wav_to_fbank, read_wav_file
         
     | 
| 2 | 
         
            +
            from .stft import TacotronSTFT
         
     | 
    	
        audioldm/audio/__pycache__/__init__.cpython-39.pyc
    ADDED
    
    | 
         Binary file (260 Bytes). View file 
     | 
| 
         | 
    	
        audioldm/audio/__pycache__/audio_processing.cpython-39.pyc
    ADDED
    
    | 
         Binary file (2.78 kB). View file 
     | 
| 
         | 
    	
        audioldm/audio/__pycache__/mix.cpython-39.pyc
    ADDED
    
    | 
         Binary file (1.7 kB). View file 
     | 
| 
         | 
    	
        audioldm/audio/__pycache__/stft.cpython-39.pyc
    ADDED
    
    | 
         Binary file (4.99 kB). View file 
     | 
| 
         | 
    	
        audioldm/audio/__pycache__/tools.cpython-39.pyc
    ADDED
    
    | 
         Binary file (2.19 kB). View file 
     | 
| 
         | 
    	
        audioldm/audio/__pycache__/torch_tools.cpython-39.pyc
    ADDED
    
    | 
         Binary file (3.79 kB). View file 
     | 
| 
         | 
    	
        audioldm/audio/audio_processing.py
    ADDED
    
    | 
         @@ -0,0 +1,100 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import numpy as np
         
     | 
| 3 | 
         
            +
            import librosa.util as librosa_util
         
     | 
| 4 | 
         
            +
            from scipy.signal import get_window
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            def window_sumsquare(
         
     | 
| 8 | 
         
            +
                window,
         
     | 
| 9 | 
         
            +
                n_frames,
         
     | 
| 10 | 
         
            +
                hop_length,
         
     | 
| 11 | 
         
            +
                win_length,
         
     | 
| 12 | 
         
            +
                n_fft,
         
     | 
| 13 | 
         
            +
                dtype=np.float32,
         
     | 
| 14 | 
         
            +
                norm=None,
         
     | 
| 15 | 
         
            +
            ):
         
     | 
| 16 | 
         
            +
                """
         
     | 
| 17 | 
         
            +
                # from librosa 0.6
         
     | 
| 18 | 
         
            +
                Compute the sum-square envelope of a window function at a given hop length.
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
                This is used to estimate modulation effects induced by windowing
         
     | 
| 21 | 
         
            +
                observations in short-time fourier transforms.
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                Parameters
         
     | 
| 24 | 
         
            +
                ----------
         
     | 
| 25 | 
         
            +
                window : string, tuple, number, callable, or list-like
         
     | 
| 26 | 
         
            +
                    Window specification, as in `get_window`
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                n_frames : int > 0
         
     | 
| 29 | 
         
            +
                    The number of analysis frames
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                hop_length : int > 0
         
     | 
| 32 | 
         
            +
                    The number of samples to advance between frames
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                win_length : [optional]
         
     | 
| 35 | 
         
            +
                    The length of the window function.  By default, this matches `n_fft`.
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                n_fft : int > 0
         
     | 
| 38 | 
         
            +
                    The length of each analysis frame.
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                dtype : np.dtype
         
     | 
| 41 | 
         
            +
                    The data type of the output
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                Returns
         
     | 
| 44 | 
         
            +
                -------
         
     | 
| 45 | 
         
            +
                wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
         
     | 
| 46 | 
         
            +
                    The sum-squared envelope of the window function
         
     | 
| 47 | 
         
            +
                """
         
     | 
| 48 | 
         
            +
                if win_length is None:
         
     | 
| 49 | 
         
            +
                    win_length = n_fft
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                n = n_fft + hop_length * (n_frames - 1)
         
     | 
| 52 | 
         
            +
                x = np.zeros(n, dtype=dtype)
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
                # Compute the squared window at the desired length
         
     | 
| 55 | 
         
            +
                win_sq = get_window(window, win_length, fftbins=True)
         
     | 
| 56 | 
         
            +
                win_sq = librosa_util.normalize(win_sq, norm=norm) ** 2
         
     | 
| 57 | 
         
            +
                win_sq = librosa_util.pad_center(win_sq, n_fft)
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                # Fill the envelope
         
     | 
| 60 | 
         
            +
                for i in range(n_frames):
         
     | 
| 61 | 
         
            +
                    sample = i * hop_length
         
     | 
| 62 | 
         
            +
                    x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))]
         
     | 
| 63 | 
         
            +
                return x
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
            def griffin_lim(magnitudes, stft_fn, n_iters=30):
         
     | 
| 67 | 
         
            +
                """
         
     | 
| 68 | 
         
            +
                PARAMS
         
     | 
| 69 | 
         
            +
                ------
         
     | 
| 70 | 
         
            +
                magnitudes: spectrogram magnitudes
         
     | 
| 71 | 
         
            +
                stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods
         
     | 
| 72 | 
         
            +
                """
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size())))
         
     | 
| 75 | 
         
            +
                angles = angles.astype(np.float32)
         
     | 
| 76 | 
         
            +
                angles = torch.autograd.Variable(torch.from_numpy(angles))
         
     | 
| 77 | 
         
            +
                signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                for i in range(n_iters):
         
     | 
| 80 | 
         
            +
                    _, angles = stft_fn.transform(signal)
         
     | 
| 81 | 
         
            +
                    signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
         
     | 
| 82 | 
         
            +
                return signal
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
            def dynamic_range_compression(x, normalize_fun=torch.log, C=1, clip_val=1e-5):
         
     | 
| 86 | 
         
            +
                """
         
     | 
| 87 | 
         
            +
                PARAMS
         
     | 
| 88 | 
         
            +
                ------
         
     | 
| 89 | 
         
            +
                C: compression factor
         
     | 
| 90 | 
         
            +
                """
         
     | 
| 91 | 
         
            +
                return normalize_fun(torch.clamp(x, min=clip_val) * C)
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
            def dynamic_range_decompression(x, C=1):
         
     | 
| 95 | 
         
            +
                """
         
     | 
| 96 | 
         
            +
                PARAMS
         
     | 
| 97 | 
         
            +
                ------
         
     | 
| 98 | 
         
            +
                C: compression factor used to compress
         
     | 
| 99 | 
         
            +
                """
         
     | 
| 100 | 
         
            +
                return torch.exp(x) / C
         
     | 
    	
        audioldm/audio/stft.py
    ADDED
    
    | 
         @@ -0,0 +1,186 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 3 | 
         
            +
            import numpy as np
         
     | 
| 4 | 
         
            +
            from scipy.signal import get_window
         
     | 
| 5 | 
         
            +
            from librosa.util import pad_center, tiny
         
     | 
| 6 | 
         
            +
            from librosa.filters import mel as librosa_mel_fn
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from audioldm.audio.audio_processing import (
         
     | 
| 9 | 
         
            +
                dynamic_range_compression,
         
     | 
| 10 | 
         
            +
                dynamic_range_decompression,
         
     | 
| 11 | 
         
            +
                window_sumsquare,
         
     | 
| 12 | 
         
            +
            )
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            class STFT(torch.nn.Module):
         
     | 
| 16 | 
         
            +
                """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
                def __init__(self, filter_length, hop_length, win_length, window="hann"):
         
     | 
| 19 | 
         
            +
                    super(STFT, self).__init__()
         
     | 
| 20 | 
         
            +
                    self.filter_length = filter_length
         
     | 
| 21 | 
         
            +
                    self.hop_length = hop_length
         
     | 
| 22 | 
         
            +
                    self.win_length = win_length
         
     | 
| 23 | 
         
            +
                    self.window = window
         
     | 
| 24 | 
         
            +
                    self.forward_transform = None
         
     | 
| 25 | 
         
            +
                    scale = self.filter_length / self.hop_length
         
     | 
| 26 | 
         
            +
                    fourier_basis = np.fft.fft(np.eye(self.filter_length))
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                    cutoff = int((self.filter_length / 2 + 1))
         
     | 
| 29 | 
         
            +
                    fourier_basis = np.vstack(
         
     | 
| 30 | 
         
            +
                        [np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
         
     | 
| 31 | 
         
            +
                    )
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                    forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
         
     | 
| 34 | 
         
            +
                    inverse_basis = torch.FloatTensor(
         
     | 
| 35 | 
         
            +
                        np.linalg.pinv(scale * fourier_basis).T[:, None, :]
         
     | 
| 36 | 
         
            +
                    )
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                    if window is not None:
         
     | 
| 39 | 
         
            +
                        assert filter_length >= win_length
         
     | 
| 40 | 
         
            +
                        # get window and zero center pad it to filter_length
         
     | 
| 41 | 
         
            +
                        fft_window = get_window(window, win_length, fftbins=True)
         
     | 
| 42 | 
         
            +
                        fft_window = pad_center(fft_window, filter_length)
         
     | 
| 43 | 
         
            +
                        fft_window = torch.from_numpy(fft_window).float()
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                        # window the bases
         
     | 
| 46 | 
         
            +
                        forward_basis *= fft_window
         
     | 
| 47 | 
         
            +
                        inverse_basis *= fft_window
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                    self.register_buffer("forward_basis", forward_basis.float())
         
     | 
| 50 | 
         
            +
                    self.register_buffer("inverse_basis", inverse_basis.float())
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                def transform(self, input_data):
         
     | 
| 53 | 
         
            +
                    device = self.forward_basis.device
         
     | 
| 54 | 
         
            +
                    input_data = input_data.to(device)
         
     | 
| 55 | 
         
            +
                    
         
     | 
| 56 | 
         
            +
                    num_batches = input_data.size(0)
         
     | 
| 57 | 
         
            +
                    num_samples = input_data.size(1)
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                    self.num_samples = num_samples
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                    # similar to librosa, reflect-pad the input
         
     | 
| 62 | 
         
            +
                    input_data = input_data.view(num_batches, 1, num_samples)
         
     | 
| 63 | 
         
            +
                    input_data = F.pad(
         
     | 
| 64 | 
         
            +
                        input_data.unsqueeze(1),
         
     | 
| 65 | 
         
            +
                        (int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
         
     | 
| 66 | 
         
            +
                        mode="reflect",
         
     | 
| 67 | 
         
            +
                    )
         
     | 
| 68 | 
         
            +
                    input_data = input_data.squeeze(1)
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                    forward_transform = F.conv1d(
         
     | 
| 71 | 
         
            +
                        input_data,
         
     | 
| 72 | 
         
            +
                        torch.autograd.Variable(self.forward_basis, requires_grad=False),
         
     | 
| 73 | 
         
            +
                        stride=self.hop_length,
         
     | 
| 74 | 
         
            +
                        padding=0,
         
     | 
| 75 | 
         
            +
                    )#.cpu()
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                    cutoff = int((self.filter_length / 2) + 1)
         
     | 
| 78 | 
         
            +
                    real_part = forward_transform[:, :cutoff, :]
         
     | 
| 79 | 
         
            +
                    imag_part = forward_transform[:, cutoff:, :]
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                    magnitude = torch.sqrt(real_part**2 + imag_part**2)
         
     | 
| 82 | 
         
            +
                    phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data))
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                    return magnitude, phase
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
                def inverse(self, magnitude, phase):
         
     | 
| 87 | 
         
            +
                    device = self.forward_basis.device
         
     | 
| 88 | 
         
            +
                    magnitude, phase = magnitude.to(device), phase.to(device)
         
     | 
| 89 | 
         
            +
                    
         
     | 
| 90 | 
         
            +
                    recombine_magnitude_phase = torch.cat(
         
     | 
| 91 | 
         
            +
                        [magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
         
     | 
| 92 | 
         
            +
                    )
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                    inverse_transform = F.conv_transpose1d(
         
     | 
| 95 | 
         
            +
                        recombine_magnitude_phase,
         
     | 
| 96 | 
         
            +
                        torch.autograd.Variable(self.inverse_basis, requires_grad=False),
         
     | 
| 97 | 
         
            +
                        stride=self.hop_length,
         
     | 
| 98 | 
         
            +
                        padding=0,
         
     | 
| 99 | 
         
            +
                    )
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                    if self.window is not None:
         
     | 
| 102 | 
         
            +
                        window_sum = window_sumsquare(
         
     | 
| 103 | 
         
            +
                            self.window,
         
     | 
| 104 | 
         
            +
                            magnitude.size(-1),
         
     | 
| 105 | 
         
            +
                            hop_length=self.hop_length,
         
     | 
| 106 | 
         
            +
                            win_length=self.win_length,
         
     | 
| 107 | 
         
            +
                            n_fft=self.filter_length,
         
     | 
| 108 | 
         
            +
                            dtype=np.float32,
         
     | 
| 109 | 
         
            +
                        )
         
     | 
| 110 | 
         
            +
                        # remove modulation effects
         
     | 
| 111 | 
         
            +
                        approx_nonzero_indices = torch.from_numpy(
         
     | 
| 112 | 
         
            +
                            np.where(window_sum > tiny(window_sum))[0]
         
     | 
| 113 | 
         
            +
                        )
         
     | 
| 114 | 
         
            +
                        window_sum = torch.autograd.Variable(
         
     | 
| 115 | 
         
            +
                            torch.from_numpy(window_sum), requires_grad=False
         
     | 
| 116 | 
         
            +
                        )
         
     | 
| 117 | 
         
            +
                        window_sum = window_sum
         
     | 
| 118 | 
         
            +
                        inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
         
     | 
| 119 | 
         
            +
                            approx_nonzero_indices
         
     | 
| 120 | 
         
            +
                        ]
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                        # scale by hop ratio
         
     | 
| 123 | 
         
            +
                        inverse_transform *= float(self.filter_length) / self.hop_length
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                    inverse_transform = inverse_transform[:, :, int(self.filter_length / 2) :]
         
     | 
| 126 | 
         
            +
                    inverse_transform = inverse_transform[:, :, : -int(self.filter_length / 2) :]
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                    return inverse_transform
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                def forward(self, input_data):
         
     | 
| 131 | 
         
            +
                    self.magnitude, self.phase = self.transform(input_data)
         
     | 
| 132 | 
         
            +
                    reconstruction = self.inverse(self.magnitude, self.phase)
         
     | 
| 133 | 
         
            +
                    return reconstruction
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
            class TacotronSTFT(torch.nn.Module):
         
     | 
| 137 | 
         
            +
                def __init__(
         
     | 
| 138 | 
         
            +
                    self,
         
     | 
| 139 | 
         
            +
                    filter_length,
         
     | 
| 140 | 
         
            +
                    hop_length,
         
     | 
| 141 | 
         
            +
                    win_length,
         
     | 
| 142 | 
         
            +
                    n_mel_channels,
         
     | 
| 143 | 
         
            +
                    sampling_rate,
         
     | 
| 144 | 
         
            +
                    mel_fmin,
         
     | 
| 145 | 
         
            +
                    mel_fmax,
         
     | 
| 146 | 
         
            +
                ):
         
     | 
| 147 | 
         
            +
                    super(TacotronSTFT, self).__init__()
         
     | 
| 148 | 
         
            +
                    self.n_mel_channels = n_mel_channels
         
     | 
| 149 | 
         
            +
                    self.sampling_rate = sampling_rate
         
     | 
| 150 | 
         
            +
                    self.stft_fn = STFT(filter_length, hop_length, win_length)
         
     | 
| 151 | 
         
            +
                    mel_basis = librosa_mel_fn(
         
     | 
| 152 | 
         
            +
                        sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax
         
     | 
| 153 | 
         
            +
                    )
         
     | 
| 154 | 
         
            +
                    mel_basis = torch.from_numpy(mel_basis).float()
         
     | 
| 155 | 
         
            +
                    self.register_buffer("mel_basis", mel_basis)
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                def spectral_normalize(self, magnitudes, normalize_fun):
         
     | 
| 158 | 
         
            +
                    output = dynamic_range_compression(magnitudes, normalize_fun)
         
     | 
| 159 | 
         
            +
                    return output
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                def spectral_de_normalize(self, magnitudes):
         
     | 
| 162 | 
         
            +
                    output = dynamic_range_decompression(magnitudes)
         
     | 
| 163 | 
         
            +
                    return output
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                def mel_spectrogram(self, y, normalize_fun=torch.log):
         
     | 
| 166 | 
         
            +
                    """Computes mel-spectrograms from a batch of waves
         
     | 
| 167 | 
         
            +
                    PARAMS
         
     | 
| 168 | 
         
            +
                    ------
         
     | 
| 169 | 
         
            +
                    y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
                    RETURNS
         
     | 
| 172 | 
         
            +
                    -------
         
     | 
| 173 | 
         
            +
                    mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
         
     | 
| 174 | 
         
            +
                    """
         
     | 
| 175 | 
         
            +
                    assert torch.min(y.data) >= -1, torch.min(y.data)
         
     | 
| 176 | 
         
            +
                    assert torch.max(y.data) <= 1, torch.max(y.data)
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                    magnitudes, phases = self.stft_fn.transform(y)
         
     | 
| 179 | 
         
            +
                    magnitudes = magnitudes.data
         
     | 
| 180 | 
         
            +
                    mel_output = torch.matmul(self.mel_basis, magnitudes)
         
     | 
| 181 | 
         
            +
                    mel_output = self.spectral_normalize(mel_output, normalize_fun)
         
     | 
| 182 | 
         
            +
                    energy = torch.norm(magnitudes, dim=1)
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
                    log_magnitudes = self.spectral_normalize(magnitudes, normalize_fun)
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
                    return mel_output, log_magnitudes, energy
         
     | 
    	
        audioldm/audio/tools.py
    ADDED
    
    | 
         @@ -0,0 +1,85 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import numpy as np
         
     | 
| 3 | 
         
            +
            import torchaudio
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            def get_mel_from_wav(audio, _stft):
         
     | 
| 7 | 
         
            +
                audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1)
         
     | 
| 8 | 
         
            +
                audio = torch.autograd.Variable(audio, requires_grad=False)
         
     | 
| 9 | 
         
            +
                melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio)
         
     | 
| 10 | 
         
            +
                melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32)
         
     | 
| 11 | 
         
            +
                log_magnitudes_stft = (
         
     | 
| 12 | 
         
            +
                    torch.squeeze(log_magnitudes_stft, 0).numpy().astype(np.float32)
         
     | 
| 13 | 
         
            +
                )
         
     | 
| 14 | 
         
            +
                energy = torch.squeeze(energy, 0).numpy().astype(np.float32)
         
     | 
| 15 | 
         
            +
                return melspec, log_magnitudes_stft, energy
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            def _pad_spec(fbank, target_length=1024):
         
     | 
| 19 | 
         
            +
                n_frames = fbank.shape[0]
         
     | 
| 20 | 
         
            +
                p = target_length - n_frames
         
     | 
| 21 | 
         
            +
                # cut and pad
         
     | 
| 22 | 
         
            +
                if p > 0:
         
     | 
| 23 | 
         
            +
                    m = torch.nn.ZeroPad2d((0, 0, 0, p))
         
     | 
| 24 | 
         
            +
                    fbank = m(fbank)
         
     | 
| 25 | 
         
            +
                elif p < 0:
         
     | 
| 26 | 
         
            +
                    fbank = fbank[0:target_length, :]
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                if fbank.size(-1) % 2 != 0:
         
     | 
| 29 | 
         
            +
                    fbank = fbank[..., :-1]
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                return fbank
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            def pad_wav(waveform, segment_length):
         
     | 
| 35 | 
         
            +
                waveform_length = waveform.shape[-1]
         
     | 
| 36 | 
         
            +
                assert waveform_length > 100, "Waveform is too short, %s" % waveform_length
         
     | 
| 37 | 
         
            +
                if segment_length is None or waveform_length == segment_length:
         
     | 
| 38 | 
         
            +
                    return waveform
         
     | 
| 39 | 
         
            +
                elif waveform_length > segment_length:
         
     | 
| 40 | 
         
            +
                    return waveform[:segment_length]
         
     | 
| 41 | 
         
            +
                elif waveform_length < segment_length:
         
     | 
| 42 | 
         
            +
                    temp_wav = np.zeros((1, segment_length))
         
     | 
| 43 | 
         
            +
                    temp_wav[:, :waveform_length] = waveform
         
     | 
| 44 | 
         
            +
                return temp_wav
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            def normalize_wav(waveform):
         
     | 
| 47 | 
         
            +
                waveform = waveform - np.mean(waveform)
         
     | 
| 48 | 
         
            +
                waveform = waveform / (np.max(np.abs(waveform)) + 1e-8)
         
     | 
| 49 | 
         
            +
                return waveform * 0.5
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            def read_wav_file(filename, segment_length):
         
     | 
| 53 | 
         
            +
                # waveform, sr = librosa.load(filename, sr=None, mono=True) # 4 times slower
         
     | 
| 54 | 
         
            +
                waveform, sr = torchaudio.load(filename)  # Faster!!!
         
     | 
| 55 | 
         
            +
                waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
         
     | 
| 56 | 
         
            +
                waveform = waveform.numpy()[0, ...]
         
     | 
| 57 | 
         
            +
                waveform = normalize_wav(waveform)
         
     | 
| 58 | 
         
            +
                waveform = waveform[None, ...]
         
     | 
| 59 | 
         
            +
                waveform = pad_wav(waveform, segment_length)
         
     | 
| 60 | 
         
            +
                
         
     | 
| 61 | 
         
            +
                waveform = waveform / np.max(np.abs(waveform))
         
     | 
| 62 | 
         
            +
                waveform = 0.5 * waveform
         
     | 
| 63 | 
         
            +
                
         
     | 
| 64 | 
         
            +
                return waveform
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
            def wav_to_fbank(filename, target_length=1024, fn_STFT=None):
         
     | 
| 68 | 
         
            +
                assert fn_STFT is not None
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                # mixup
         
     | 
| 71 | 
         
            +
                waveform = read_wav_file(filename, target_length * 160)  # hop size is 160
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                waveform = waveform[0, ...]
         
     | 
| 74 | 
         
            +
                waveform = torch.FloatTensor(waveform)
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                fbank = torch.FloatTensor(fbank.T)
         
     | 
| 79 | 
         
            +
                log_magnitudes_stft = torch.FloatTensor(log_magnitudes_stft.T)
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
         
     | 
| 82 | 
         
            +
                    log_magnitudes_stft, target_length
         
     | 
| 83 | 
         
            +
                )
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                return fbank, log_magnitudes_stft, waveform
         
     | 
    	
        audioldm/hifigan/__init__.py
    ADDED
    
    | 
         @@ -0,0 +1,7 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from .models import Generator
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            class AttrDict(dict):
         
     | 
| 5 | 
         
            +
                def __init__(self, *args, **kwargs):
         
     | 
| 6 | 
         
            +
                    super(AttrDict, self).__init__(*args, **kwargs)
         
     | 
| 7 | 
         
            +
                    self.__dict__ = self
         
     | 
    	
        audioldm/hifigan/__pycache__/__init__.cpython-39.pyc
    ADDED
    
    | 
         Binary file (574 Bytes). View file 
     | 
| 
         | 
    	
        audioldm/hifigan/__pycache__/models.cpython-39.pyc
    ADDED
    
    | 
         Binary file (3.73 kB). View file 
     | 
| 
         | 
    	
        audioldm/hifigan/__pycache__/utilities.cpython-39.pyc
    ADDED
    
    | 
         Binary file (2.37 kB). View file 
     | 
| 
         | 
    	
        audioldm/hifigan/models.py
    ADDED
    
    | 
         @@ -0,0 +1,174 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 4 | 
         
            +
            from torch.nn import Conv1d, ConvTranspose1d
         
     | 
| 5 | 
         
            +
            from torch.nn.utils import weight_norm, remove_weight_norm
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            LRELU_SLOPE = 0.1
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            def init_weights(m, mean=0.0, std=0.01):
         
     | 
| 11 | 
         
            +
                classname = m.__class__.__name__
         
     | 
| 12 | 
         
            +
                if classname.find("Conv") != -1:
         
     | 
| 13 | 
         
            +
                    m.weight.data.normal_(mean, std)
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            def get_padding(kernel_size, dilation=1):
         
     | 
| 17 | 
         
            +
                return int((kernel_size * dilation - dilation) / 2)
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            class ResBlock(torch.nn.Module):
         
     | 
| 21 | 
         
            +
                def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
         
     | 
| 22 | 
         
            +
                    super(ResBlock, self).__init__()
         
     | 
| 23 | 
         
            +
                    self.h = h
         
     | 
| 24 | 
         
            +
                    self.convs1 = nn.ModuleList(
         
     | 
| 25 | 
         
            +
                        [
         
     | 
| 26 | 
         
            +
                            weight_norm(
         
     | 
| 27 | 
         
            +
                                Conv1d(
         
     | 
| 28 | 
         
            +
                                    channels,
         
     | 
| 29 | 
         
            +
                                    channels,
         
     | 
| 30 | 
         
            +
                                    kernel_size,
         
     | 
| 31 | 
         
            +
                                    1,
         
     | 
| 32 | 
         
            +
                                    dilation=dilation[0],
         
     | 
| 33 | 
         
            +
                                    padding=get_padding(kernel_size, dilation[0]),
         
     | 
| 34 | 
         
            +
                                )
         
     | 
| 35 | 
         
            +
                            ),
         
     | 
| 36 | 
         
            +
                            weight_norm(
         
     | 
| 37 | 
         
            +
                                Conv1d(
         
     | 
| 38 | 
         
            +
                                    channels,
         
     | 
| 39 | 
         
            +
                                    channels,
         
     | 
| 40 | 
         
            +
                                    kernel_size,
         
     | 
| 41 | 
         
            +
                                    1,
         
     | 
| 42 | 
         
            +
                                    dilation=dilation[1],
         
     | 
| 43 | 
         
            +
                                    padding=get_padding(kernel_size, dilation[1]),
         
     | 
| 44 | 
         
            +
                                )
         
     | 
| 45 | 
         
            +
                            ),
         
     | 
| 46 | 
         
            +
                            weight_norm(
         
     | 
| 47 | 
         
            +
                                Conv1d(
         
     | 
| 48 | 
         
            +
                                    channels,
         
     | 
| 49 | 
         
            +
                                    channels,
         
     | 
| 50 | 
         
            +
                                    kernel_size,
         
     | 
| 51 | 
         
            +
                                    1,
         
     | 
| 52 | 
         
            +
                                    dilation=dilation[2],
         
     | 
| 53 | 
         
            +
                                    padding=get_padding(kernel_size, dilation[2]),
         
     | 
| 54 | 
         
            +
                                )
         
     | 
| 55 | 
         
            +
                            ),
         
     | 
| 56 | 
         
            +
                        ]
         
     | 
| 57 | 
         
            +
                    )
         
     | 
| 58 | 
         
            +
                    self.convs1.apply(init_weights)
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                    self.convs2 = nn.ModuleList(
         
     | 
| 61 | 
         
            +
                        [
         
     | 
| 62 | 
         
            +
                            weight_norm(
         
     | 
| 63 | 
         
            +
                                Conv1d(
         
     | 
| 64 | 
         
            +
                                    channels,
         
     | 
| 65 | 
         
            +
                                    channels,
         
     | 
| 66 | 
         
            +
                                    kernel_size,
         
     | 
| 67 | 
         
            +
                                    1,
         
     | 
| 68 | 
         
            +
                                    dilation=1,
         
     | 
| 69 | 
         
            +
                                    padding=get_padding(kernel_size, 1),
         
     | 
| 70 | 
         
            +
                                )
         
     | 
| 71 | 
         
            +
                            ),
         
     | 
| 72 | 
         
            +
                            weight_norm(
         
     | 
| 73 | 
         
            +
                                Conv1d(
         
     | 
| 74 | 
         
            +
                                    channels,
         
     | 
| 75 | 
         
            +
                                    channels,
         
     | 
| 76 | 
         
            +
                                    kernel_size,
         
     | 
| 77 | 
         
            +
                                    1,
         
     | 
| 78 | 
         
            +
                                    dilation=1,
         
     | 
| 79 | 
         
            +
                                    padding=get_padding(kernel_size, 1),
         
     | 
| 80 | 
         
            +
                                )
         
     | 
| 81 | 
         
            +
                            ),
         
     | 
| 82 | 
         
            +
                            weight_norm(
         
     | 
| 83 | 
         
            +
                                Conv1d(
         
     | 
| 84 | 
         
            +
                                    channels,
         
     | 
| 85 | 
         
            +
                                    channels,
         
     | 
| 86 | 
         
            +
                                    kernel_size,
         
     | 
| 87 | 
         
            +
                                    1,
         
     | 
| 88 | 
         
            +
                                    dilation=1,
         
     | 
| 89 | 
         
            +
                                    padding=get_padding(kernel_size, 1),
         
     | 
| 90 | 
         
            +
                                )
         
     | 
| 91 | 
         
            +
                            ),
         
     | 
| 92 | 
         
            +
                        ]
         
     | 
| 93 | 
         
            +
                    )
         
     | 
| 94 | 
         
            +
                    self.convs2.apply(init_weights)
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                def forward(self, x):
         
     | 
| 97 | 
         
            +
                    for c1, c2 in zip(self.convs1, self.convs2):
         
     | 
| 98 | 
         
            +
                        xt = F.leaky_relu(x, LRELU_SLOPE)
         
     | 
| 99 | 
         
            +
                        xt = c1(xt)
         
     | 
| 100 | 
         
            +
                        xt = F.leaky_relu(xt, LRELU_SLOPE)
         
     | 
| 101 | 
         
            +
                        xt = c2(xt)
         
     | 
| 102 | 
         
            +
                        x = xt + x
         
     | 
| 103 | 
         
            +
                    return x
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                def remove_weight_norm(self):
         
     | 
| 106 | 
         
            +
                    for l in self.convs1:
         
     | 
| 107 | 
         
            +
                        remove_weight_norm(l)
         
     | 
| 108 | 
         
            +
                    for l in self.convs2:
         
     | 
| 109 | 
         
            +
                        remove_weight_norm(l)
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
            class Generator(torch.nn.Module):
         
     | 
| 113 | 
         
            +
                def __init__(self, h):
         
     | 
| 114 | 
         
            +
                    super(Generator, self).__init__()
         
     | 
| 115 | 
         
            +
                    self.h = h
         
     | 
| 116 | 
         
            +
                    self.num_kernels = len(h.resblock_kernel_sizes)
         
     | 
| 117 | 
         
            +
                    self.num_upsamples = len(h.upsample_rates)
         
     | 
| 118 | 
         
            +
                    self.conv_pre = weight_norm(
         
     | 
| 119 | 
         
            +
                        Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)
         
     | 
| 120 | 
         
            +
                    )
         
     | 
| 121 | 
         
            +
                    resblock = ResBlock
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                    self.ups = nn.ModuleList()
         
     | 
| 124 | 
         
            +
                    for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
         
     | 
| 125 | 
         
            +
                        self.ups.append(
         
     | 
| 126 | 
         
            +
                            weight_norm(
         
     | 
| 127 | 
         
            +
                                ConvTranspose1d(
         
     | 
| 128 | 
         
            +
                                    h.upsample_initial_channel // (2**i),
         
     | 
| 129 | 
         
            +
                                    h.upsample_initial_channel // (2 ** (i + 1)),
         
     | 
| 130 | 
         
            +
                                    k,
         
     | 
| 131 | 
         
            +
                                    u,
         
     | 
| 132 | 
         
            +
                                    padding=(k - u) // 2,
         
     | 
| 133 | 
         
            +
                                )
         
     | 
| 134 | 
         
            +
                            )
         
     | 
| 135 | 
         
            +
                        )
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                    self.resblocks = nn.ModuleList()
         
     | 
| 138 | 
         
            +
                    for i in range(len(self.ups)):
         
     | 
| 139 | 
         
            +
                        ch = h.upsample_initial_channel // (2 ** (i + 1))
         
     | 
| 140 | 
         
            +
                        for j, (k, d) in enumerate(
         
     | 
| 141 | 
         
            +
                            zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
         
     | 
| 142 | 
         
            +
                        ):
         
     | 
| 143 | 
         
            +
                            self.resblocks.append(resblock(h, ch, k, d))
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
                    self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
         
     | 
| 146 | 
         
            +
                    self.ups.apply(init_weights)
         
     | 
| 147 | 
         
            +
                    self.conv_post.apply(init_weights)
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                def forward(self, x):
         
     | 
| 150 | 
         
            +
                    x = self.conv_pre(x)
         
     | 
| 151 | 
         
            +
                    for i in range(self.num_upsamples):
         
     | 
| 152 | 
         
            +
                        x = F.leaky_relu(x, LRELU_SLOPE)
         
     | 
| 153 | 
         
            +
                        x = self.ups[i](x)
         
     | 
| 154 | 
         
            +
                        xs = None
         
     | 
| 155 | 
         
            +
                        for j in range(self.num_kernels):
         
     | 
| 156 | 
         
            +
                            if xs is None:
         
     | 
| 157 | 
         
            +
                                xs = self.resblocks[i * self.num_kernels + j](x)
         
     | 
| 158 | 
         
            +
                            else:
         
     | 
| 159 | 
         
            +
                                xs += self.resblocks[i * self.num_kernels + j](x)
         
     | 
| 160 | 
         
            +
                        x = xs / self.num_kernels
         
     | 
| 161 | 
         
            +
                    x = F.leaky_relu(x)
         
     | 
| 162 | 
         
            +
                    x = self.conv_post(x)
         
     | 
| 163 | 
         
            +
                    x = torch.tanh(x)
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                    return x
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                def remove_weight_norm(self):
         
     | 
| 168 | 
         
            +
                    # print("Removing weight norm...")
         
     | 
| 169 | 
         
            +
                    for l in self.ups:
         
     | 
| 170 | 
         
            +
                        remove_weight_norm(l)
         
     | 
| 171 | 
         
            +
                    for l in self.resblocks:
         
     | 
| 172 | 
         
            +
                        l.remove_weight_norm()
         
     | 
| 173 | 
         
            +
                    remove_weight_norm(self.conv_pre)
         
     | 
| 174 | 
         
            +
                    remove_weight_norm(self.conv_post)
         
     | 
    	
        audioldm/hifigan/utilities.py
    ADDED
    
    | 
         @@ -0,0 +1,86 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import json
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            import torch
         
     | 
| 5 | 
         
            +
            import numpy as np
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            import audioldm.hifigan as hifigan
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            HIFIGAN_16K_64 = {
         
     | 
| 10 | 
         
            +
                "resblock": "1",
         
     | 
| 11 | 
         
            +
                "num_gpus": 6,
         
     | 
| 12 | 
         
            +
                "batch_size": 16,
         
     | 
| 13 | 
         
            +
                "learning_rate": 0.0002,
         
     | 
| 14 | 
         
            +
                "adam_b1": 0.8,
         
     | 
| 15 | 
         
            +
                "adam_b2": 0.99,
         
     | 
| 16 | 
         
            +
                "lr_decay": 0.999,
         
     | 
| 17 | 
         
            +
                "seed": 1234,
         
     | 
| 18 | 
         
            +
                "upsample_rates": [5, 4, 2, 2, 2],
         
     | 
| 19 | 
         
            +
                "upsample_kernel_sizes": [16, 16, 8, 4, 4],
         
     | 
| 20 | 
         
            +
                "upsample_initial_channel": 1024,
         
     | 
| 21 | 
         
            +
                "resblock_kernel_sizes": [3, 7, 11],
         
     | 
| 22 | 
         
            +
                "resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
         
     | 
| 23 | 
         
            +
                "segment_size": 8192,
         
     | 
| 24 | 
         
            +
                "num_mels": 64,
         
     | 
| 25 | 
         
            +
                "num_freq": 1025,
         
     | 
| 26 | 
         
            +
                "n_fft": 1024,
         
     | 
| 27 | 
         
            +
                "hop_size": 160,
         
     | 
| 28 | 
         
            +
                "win_size": 1024,
         
     | 
| 29 | 
         
            +
                "sampling_rate": 16000,
         
     | 
| 30 | 
         
            +
                "fmin": 0,
         
     | 
| 31 | 
         
            +
                "fmax": 8000,
         
     | 
| 32 | 
         
            +
                "fmax_for_loss": None,
         
     | 
| 33 | 
         
            +
                "num_workers": 4,
         
     | 
| 34 | 
         
            +
                "dist_config": {
         
     | 
| 35 | 
         
            +
                    "dist_backend": "nccl",
         
     | 
| 36 | 
         
            +
                    "dist_url": "tcp://localhost:54321",
         
     | 
| 37 | 
         
            +
                    "world_size": 1,
         
     | 
| 38 | 
         
            +
                },
         
     | 
| 39 | 
         
            +
            }
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            def get_available_checkpoint_keys(model, ckpt):
         
     | 
| 43 | 
         
            +
                print("==> Attemp to reload from %s" % ckpt)
         
     | 
| 44 | 
         
            +
                state_dict = torch.load(ckpt)["state_dict"]
         
     | 
| 45 | 
         
            +
                current_state_dict = model.state_dict()
         
     | 
| 46 | 
         
            +
                new_state_dict = {}
         
     | 
| 47 | 
         
            +
                for k in state_dict.keys():
         
     | 
| 48 | 
         
            +
                    if (
         
     | 
| 49 | 
         
            +
                        k in current_state_dict.keys()
         
     | 
| 50 | 
         
            +
                        and current_state_dict[k].size() == state_dict[k].size()
         
     | 
| 51 | 
         
            +
                    ):
         
     | 
| 52 | 
         
            +
                        new_state_dict[k] = state_dict[k]
         
     | 
| 53 | 
         
            +
                    else:
         
     | 
| 54 | 
         
            +
                        print("==> WARNING: Skipping %s" % k)
         
     | 
| 55 | 
         
            +
                print(
         
     | 
| 56 | 
         
            +
                    "%s out of %s keys are matched"
         
     | 
| 57 | 
         
            +
                    % (len(new_state_dict.keys()), len(state_dict.keys()))
         
     | 
| 58 | 
         
            +
                )
         
     | 
| 59 | 
         
            +
                return new_state_dict
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
            def get_param_num(model):
         
     | 
| 63 | 
         
            +
                num_param = sum(param.numel() for param in model.parameters())
         
     | 
| 64 | 
         
            +
                return num_param
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
            def get_vocoder(config, device):
         
     | 
| 68 | 
         
            +
                config = hifigan.AttrDict(HIFIGAN_16K_64)
         
     | 
| 69 | 
         
            +
                vocoder = hifigan.Generator(config)
         
     | 
| 70 | 
         
            +
                vocoder.eval()
         
     | 
| 71 | 
         
            +
                vocoder.remove_weight_norm()
         
     | 
| 72 | 
         
            +
                vocoder.to(device)
         
     | 
| 73 | 
         
            +
                return vocoder
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
            def vocoder_infer(mels, vocoder, lengths=None):
         
     | 
| 77 | 
         
            +
                vocoder.eval()
         
     | 
| 78 | 
         
            +
                with torch.no_grad():
         
     | 
| 79 | 
         
            +
                    wavs = vocoder(mels).squeeze(1)
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                wavs = (wavs.cpu().numpy() * 32768).astype("int16")
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                if lengths is not None:
         
     | 
| 84 | 
         
            +
                    wavs = wavs[:, :lengths]
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
                return wavs
         
     | 
    	
        audioldm/latent_diffusion/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        audioldm/latent_diffusion/__pycache__/__init__.cpython-39.pyc
    ADDED
    
    | 
         Binary file (164 Bytes). View file 
     | 
| 
         | 
    	
        audioldm/latent_diffusion/__pycache__/attention.cpython-39.pyc
    ADDED
    
    | 
         Binary file (11.4 kB). View file 
     | 
| 
         | 
    	
        audioldm/latent_diffusion/__pycache__/ddim.cpython-39.pyc
    ADDED
    
    | 
         Binary file (7.11 kB). View file 
     | 
| 
         | 
    	
        audioldm/latent_diffusion/__pycache__/ddpm.cpython-39.pyc
    ADDED
    
    | 
         Binary file (11 kB). View file 
     | 
| 
         | 
    	
        audioldm/latent_diffusion/__pycache__/ema.cpython-39.pyc
    ADDED
    
    | 
         Binary file (3 kB). View file 
     | 
| 
         | 
    	
        audioldm/latent_diffusion/__pycache__/openaimodel.cpython-39.pyc
    ADDED
    
    | 
         Binary file (23.7 kB). View file 
     | 
| 
         | 
    	
        audioldm/latent_diffusion/__pycache__/util.cpython-39.pyc
    ADDED
    
    | 
         Binary file (9.6 kB). View file 
     | 
| 
         | 
    	
        audioldm/latent_diffusion/attention.py
    ADDED
    
    | 
         @@ -0,0 +1,469 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from inspect import isfunction
         
     | 
| 2 | 
         
            +
            import math
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 5 | 
         
            +
            from torch import nn
         
     | 
| 6 | 
         
            +
            from einops import rearrange
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from audioldm.latent_diffusion.util import checkpoint
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            def exists(val):
         
     | 
| 12 | 
         
            +
                return val is not None
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            def uniq(arr):
         
     | 
| 16 | 
         
            +
                return {el: True for el in arr}.keys()
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            def default(val, d):
         
     | 
| 20 | 
         
            +
                if exists(val):
         
     | 
| 21 | 
         
            +
                    return val
         
     | 
| 22 | 
         
            +
                return d() if isfunction(d) else d
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            def max_neg_value(t):
         
     | 
| 26 | 
         
            +
                return -torch.finfo(t.dtype).max
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            def init_(tensor):
         
     | 
| 30 | 
         
            +
                dim = tensor.shape[-1]
         
     | 
| 31 | 
         
            +
                std = 1 / math.sqrt(dim)
         
     | 
| 32 | 
         
            +
                tensor.uniform_(-std, std)
         
     | 
| 33 | 
         
            +
                return tensor
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            # feedforward
         
     | 
| 37 | 
         
            +
            class GEGLU(nn.Module):
         
     | 
| 38 | 
         
            +
                def __init__(self, dim_in, dim_out):
         
     | 
| 39 | 
         
            +
                    super().__init__()
         
     | 
| 40 | 
         
            +
                    self.proj = nn.Linear(dim_in, dim_out * 2)
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                def forward(self, x):
         
     | 
| 43 | 
         
            +
                    x, gate = self.proj(x).chunk(2, dim=-1)
         
     | 
| 44 | 
         
            +
                    return x * F.gelu(gate)
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            class FeedForward(nn.Module):
         
     | 
| 48 | 
         
            +
                def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
         
     | 
| 49 | 
         
            +
                    super().__init__()
         
     | 
| 50 | 
         
            +
                    inner_dim = int(dim * mult)
         
     | 
| 51 | 
         
            +
                    dim_out = default(dim_out, dim)
         
     | 
| 52 | 
         
            +
                    project_in = (
         
     | 
| 53 | 
         
            +
                        nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
         
     | 
| 54 | 
         
            +
                        if not glu
         
     | 
| 55 | 
         
            +
                        else GEGLU(dim, inner_dim)
         
     | 
| 56 | 
         
            +
                    )
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                    self.net = nn.Sequential(
         
     | 
| 59 | 
         
            +
                        project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
         
     | 
| 60 | 
         
            +
                    )
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                def forward(self, x):
         
     | 
| 63 | 
         
            +
                    return self.net(x)
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
            def zero_module(module):
         
     | 
| 67 | 
         
            +
                """
         
     | 
| 68 | 
         
            +
                Zero out the parameters of a module and return it.
         
     | 
| 69 | 
         
            +
                """
         
     | 
| 70 | 
         
            +
                for p in module.parameters():
         
     | 
| 71 | 
         
            +
                    p.detach().zero_()
         
     | 
| 72 | 
         
            +
                return module
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
            def Normalize(in_channels):
         
     | 
| 76 | 
         
            +
                return torch.nn.GroupNorm(
         
     | 
| 77 | 
         
            +
                    num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
         
     | 
| 78 | 
         
            +
                )
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
            class LinearAttention(nn.Module):
         
     | 
| 82 | 
         
            +
                def __init__(self, dim, heads=4, dim_head=32):
         
     | 
| 83 | 
         
            +
                    super().__init__()
         
     | 
| 84 | 
         
            +
                    self.heads = heads
         
     | 
| 85 | 
         
            +
                    hidden_dim = dim_head * heads
         
     | 
| 86 | 
         
            +
                    self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
         
     | 
| 87 | 
         
            +
                    self.to_out = nn.Conv2d(hidden_dim, dim, 1)
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                def forward(self, x):
         
     | 
| 90 | 
         
            +
                    b, c, h, w = x.shape
         
     | 
| 91 | 
         
            +
                    qkv = self.to_qkv(x)
         
     | 
| 92 | 
         
            +
                    q, k, v = rearrange(
         
     | 
| 93 | 
         
            +
                        qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3
         
     | 
| 94 | 
         
            +
                    )
         
     | 
| 95 | 
         
            +
                    k = k.softmax(dim=-1)
         
     | 
| 96 | 
         
            +
                    context = torch.einsum("bhdn,bhen->bhde", k, v)
         
     | 
| 97 | 
         
            +
                    out = torch.einsum("bhde,bhdn->bhen", context, q)
         
     | 
| 98 | 
         
            +
                    out = rearrange(
         
     | 
| 99 | 
         
            +
                        out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w
         
     | 
| 100 | 
         
            +
                    )
         
     | 
| 101 | 
         
            +
                    return self.to_out(out)
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
            class SpatialSelfAttention(nn.Module):
         
     | 
| 105 | 
         
            +
                def __init__(self, in_channels):
         
     | 
| 106 | 
         
            +
                    super().__init__()
         
     | 
| 107 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                    self.norm = Normalize(in_channels)
         
     | 
| 110 | 
         
            +
                    self.q = torch.nn.Conv2d(
         
     | 
| 111 | 
         
            +
                        in_channels, in_channels, kernel_size=1, stride=1, padding=0
         
     | 
| 112 | 
         
            +
                    )
         
     | 
| 113 | 
         
            +
                    self.k = torch.nn.Conv2d(
         
     | 
| 114 | 
         
            +
                        in_channels, in_channels, kernel_size=1, stride=1, padding=0
         
     | 
| 115 | 
         
            +
                    )
         
     | 
| 116 | 
         
            +
                    self.v = torch.nn.Conv2d(
         
     | 
| 117 | 
         
            +
                        in_channels, in_channels, kernel_size=1, stride=1, padding=0
         
     | 
| 118 | 
         
            +
                    )
         
     | 
| 119 | 
         
            +
                    self.proj_out = torch.nn.Conv2d(
         
     | 
| 120 | 
         
            +
                        in_channels, in_channels, kernel_size=1, stride=1, padding=0
         
     | 
| 121 | 
         
            +
                    )
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                def forward(self, x):
         
     | 
| 124 | 
         
            +
                    h_ = x
         
     | 
| 125 | 
         
            +
                    h_ = self.norm(h_)
         
     | 
| 126 | 
         
            +
                    q = self.q(h_)
         
     | 
| 127 | 
         
            +
                    k = self.k(h_)
         
     | 
| 128 | 
         
            +
                    v = self.v(h_)
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                    # compute attention
         
     | 
| 131 | 
         
            +
                    b, c, h, w = q.shape
         
     | 
| 132 | 
         
            +
                    q = rearrange(q, "b c h w -> b (h w) c")
         
     | 
| 133 | 
         
            +
                    k = rearrange(k, "b c h w -> b c (h w)")
         
     | 
| 134 | 
         
            +
                    w_ = torch.einsum("bij,bjk->bik", q, k)
         
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
                    w_ = w_ * (int(c) ** (-0.5))
         
     | 
| 137 | 
         
            +
                    w_ = torch.nn.functional.softmax(w_, dim=2)
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                    # attend to values
         
     | 
| 140 | 
         
            +
                    v = rearrange(v, "b c h w -> b c (h w)")
         
     | 
| 141 | 
         
            +
                    w_ = rearrange(w_, "b i j -> b j i")
         
     | 
| 142 | 
         
            +
                    h_ = torch.einsum("bij,bjk->bik", v, w_)
         
     | 
| 143 | 
         
            +
                    h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
         
     | 
| 144 | 
         
            +
                    h_ = self.proj_out(h_)
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                    return x + h_
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
            class CrossAttention(nn.Module):
         
     | 
| 150 | 
         
            +
                """
         
     | 
| 151 | 
         
            +
                ### Cross Attention Layer
         
     | 
| 152 | 
         
            +
                This falls-back to self-attention when conditional embeddings are not specified.
         
     | 
| 153 | 
         
            +
                """
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                # use_flash_attention: bool = True
         
     | 
| 156 | 
         
            +
                use_flash_attention: bool = False
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                def __init__(
         
     | 
| 159 | 
         
            +
                    self,
         
     | 
| 160 | 
         
            +
                    query_dim,
         
     | 
| 161 | 
         
            +
                    context_dim=None,
         
     | 
| 162 | 
         
            +
                    heads=8,
         
     | 
| 163 | 
         
            +
                    dim_head=64,
         
     | 
| 164 | 
         
            +
                    dropout=0.0,
         
     | 
| 165 | 
         
            +
                    is_inplace: bool = True,
         
     | 
| 166 | 
         
            +
                ):
         
     | 
| 167 | 
         
            +
                    # def __init__(self, d_model: int, d_cond: int, n_heads: int, d_head: int, is_inplace: bool = True):
         
     | 
| 168 | 
         
            +
                    """
         
     | 
| 169 | 
         
            +
                    :param d_model: is the input embedding size
         
     | 
| 170 | 
         
            +
                    :param n_heads: is the number of attention heads
         
     | 
| 171 | 
         
            +
                    :param d_head: is the size of a attention head
         
     | 
| 172 | 
         
            +
                    :param d_cond: is the size of the conditional embeddings
         
     | 
| 173 | 
         
            +
                    :param is_inplace: specifies whether to perform the attention softmax computation inplace to
         
     | 
| 174 | 
         
            +
                        save memory
         
     | 
| 175 | 
         
            +
                    """
         
     | 
| 176 | 
         
            +
                    super().__init__()
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                    self.is_inplace = is_inplace
         
     | 
| 179 | 
         
            +
                    self.n_heads = heads
         
     | 
| 180 | 
         
            +
                    self.d_head = dim_head
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
                    # Attention scaling factor
         
     | 
| 183 | 
         
            +
                    self.scale = dim_head**-0.5
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
                    # The normal self-attention layer
         
     | 
| 186 | 
         
            +
                    if context_dim is None:
         
     | 
| 187 | 
         
            +
                        context_dim = query_dim
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
                    # Query, key and value mappings
         
     | 
| 190 | 
         
            +
                    d_attn = dim_head * heads
         
     | 
| 191 | 
         
            +
                    self.to_q = nn.Linear(query_dim, d_attn, bias=False)
         
     | 
| 192 | 
         
            +
                    self.to_k = nn.Linear(context_dim, d_attn, bias=False)
         
     | 
| 193 | 
         
            +
                    self.to_v = nn.Linear(context_dim, d_attn, bias=False)
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
                    # Final linear layer
         
     | 
| 196 | 
         
            +
                    self.to_out = nn.Sequential(nn.Linear(d_attn, query_dim), nn.Dropout(dropout))
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                    # Setup [flash attention](https://github.com/HazyResearch/flash-attention).
         
     | 
| 199 | 
         
            +
                    # Flash attention is only used if it's installed
         
     | 
| 200 | 
         
            +
                    # and `CrossAttention.use_flash_attention` is set to `True`.
         
     | 
| 201 | 
         
            +
                    try:
         
     | 
| 202 | 
         
            +
                        # You can install flash attention by cloning their Github repo,
         
     | 
| 203 | 
         
            +
                        # [https://github.com/HazyResearch/flash-attention](https://github.com/HazyResearch/flash-attention)
         
     | 
| 204 | 
         
            +
                        # and then running `python setup.py install`
         
     | 
| 205 | 
         
            +
                        from flash_attn.flash_attention import FlashAttention
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                        self.flash = FlashAttention()
         
     | 
| 208 | 
         
            +
                        # Set the scale for scaled dot-product attention.
         
     | 
| 209 | 
         
            +
                        self.flash.softmax_scale = self.scale
         
     | 
| 210 | 
         
            +
                    # Set to `None` if it's not installed
         
     | 
| 211 | 
         
            +
                    except ImportError:
         
     | 
| 212 | 
         
            +
                        self.flash = None
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                def forward(self, x, context=None, mask=None):
         
     | 
| 215 | 
         
            +
                    """
         
     | 
| 216 | 
         
            +
                    :param x: are the input embeddings of shape `[batch_size, height * width, d_model]`
         
     | 
| 217 | 
         
            +
                    :param cond: is the conditional embeddings of shape `[batch_size, n_cond, d_cond]`
         
     | 
| 218 | 
         
            +
                    """
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
                    # If `cond` is `None` we perform self attention
         
     | 
| 221 | 
         
            +
                    has_cond = context is not None
         
     | 
| 222 | 
         
            +
                    if not has_cond:
         
     | 
| 223 | 
         
            +
                        context = x
         
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
                    # Get query, key and value vectors
         
     | 
| 226 | 
         
            +
                    q = self.to_q(x)
         
     | 
| 227 | 
         
            +
                    k = self.to_k(context)
         
     | 
| 228 | 
         
            +
                    v = self.to_v(context)
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                    # Use flash attention if it's available and the head size is less than or equal to `128`
         
     | 
| 231 | 
         
            +
                    if (
         
     | 
| 232 | 
         
            +
                        CrossAttention.use_flash_attention
         
     | 
| 233 | 
         
            +
                        and self.flash is not None
         
     | 
| 234 | 
         
            +
                        and not has_cond
         
     | 
| 235 | 
         
            +
                        and self.d_head <= 128
         
     | 
| 236 | 
         
            +
                    ):
         
     | 
| 237 | 
         
            +
                        return self.flash_attention(q, k, v)
         
     | 
| 238 | 
         
            +
                    # Otherwise, fallback to normal attention
         
     | 
| 239 | 
         
            +
                    else:
         
     | 
| 240 | 
         
            +
                        return self.normal_attention(q, k, v)
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
                def flash_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
         
     | 
| 243 | 
         
            +
                    """
         
     | 
| 244 | 
         
            +
                    #### Flash Attention
         
     | 
| 245 | 
         
            +
                    :param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
         
     | 
| 246 | 
         
            +
                    :param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
         
     | 
| 247 | 
         
            +
                    :param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
         
     | 
| 248 | 
         
            +
                    """
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                    # Get batch size and number of elements along sequence axis (`width * height`)
         
     | 
| 251 | 
         
            +
                    batch_size, seq_len, _ = q.shape
         
     | 
| 252 | 
         
            +
             
     | 
| 253 | 
         
            +
                    # Stack `q`, `k`, `v` vectors for flash attention, to get a single tensor of
         
     | 
| 254 | 
         
            +
                    # shape `[batch_size, seq_len, 3, n_heads * d_head]`
         
     | 
| 255 | 
         
            +
                    qkv = torch.stack((q, k, v), dim=2)
         
     | 
| 256 | 
         
            +
                    # Split the heads
         
     | 
| 257 | 
         
            +
                    qkv = qkv.view(batch_size, seq_len, 3, self.n_heads, self.d_head)
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
                    # Flash attention works for head sizes `32`, `64` and `128`, so we have to pad the heads to
         
     | 
| 260 | 
         
            +
                    # fit this size.
         
     | 
| 261 | 
         
            +
                    if self.d_head <= 32:
         
     | 
| 262 | 
         
            +
                        pad = 32 - self.d_head
         
     | 
| 263 | 
         
            +
                    elif self.d_head <= 64:
         
     | 
| 264 | 
         
            +
                        pad = 64 - self.d_head
         
     | 
| 265 | 
         
            +
                    elif self.d_head <= 128:
         
     | 
| 266 | 
         
            +
                        pad = 128 - self.d_head
         
     | 
| 267 | 
         
            +
                    else:
         
     | 
| 268 | 
         
            +
                        raise ValueError(f"Head size ${self.d_head} too large for Flash Attention")
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
                    # Pad the heads
         
     | 
| 271 | 
         
            +
                    if pad:
         
     | 
| 272 | 
         
            +
                        qkv = torch.cat(
         
     | 
| 273 | 
         
            +
                            (qkv, qkv.new_zeros(batch_size, seq_len, 3, self.n_heads, pad)), dim=-1
         
     | 
| 274 | 
         
            +
                        )
         
     | 
| 275 | 
         
            +
             
     | 
| 276 | 
         
            +
                    # Compute attention
         
     | 
| 277 | 
         
            +
                    # $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$
         
     | 
| 278 | 
         
            +
                    # This gives a tensor of shape `[batch_size, seq_len, n_heads, d_padded]`
         
     | 
| 279 | 
         
            +
                    # TODO here I add the dtype changing
         
     | 
| 280 | 
         
            +
                    out, _ = self.flash(qkv.type(torch.float16))
         
     | 
| 281 | 
         
            +
                    # Truncate the extra head size
         
     | 
| 282 | 
         
            +
                    out = out[:, :, :, : self.d_head].float()
         
     | 
| 283 | 
         
            +
                    # Reshape to `[batch_size, seq_len, n_heads * d_head]`
         
     | 
| 284 | 
         
            +
                    out = out.reshape(batch_size, seq_len, self.n_heads * self.d_head)
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
                    # Map to `[batch_size, height * width, d_model]` with a linear layer
         
     | 
| 287 | 
         
            +
                    return self.to_out(out)
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                def normal_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
         
     | 
| 290 | 
         
            +
                    """
         
     | 
| 291 | 
         
            +
                    #### Normal Attention
         
     | 
| 292 | 
         
            +
             
     | 
| 293 | 
         
            +
                    :param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
         
     | 
| 294 | 
         
            +
                    :param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
         
     | 
| 295 | 
         
            +
                    :param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
         
     | 
| 296 | 
         
            +
                    """
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                    # Split them to heads of shape `[batch_size, seq_len, n_heads, d_head]`
         
     | 
| 299 | 
         
            +
                    q = q.view(*q.shape[:2], self.n_heads, -1)  # [bs, 64, 20, 32]
         
     | 
| 300 | 
         
            +
                    k = k.view(*k.shape[:2], self.n_heads, -1)  # [bs, 1, 20, 32]
         
     | 
| 301 | 
         
            +
                    v = v.view(*v.shape[:2], self.n_heads, -1)
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                    # Calculate attention $\frac{Q K^\top}{\sqrt{d_{key}}}$
         
     | 
| 304 | 
         
            +
                    attn = torch.einsum("bihd,bjhd->bhij", q, k) * self.scale
         
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
                    # Compute softmax
         
     | 
| 307 | 
         
            +
                    # $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)$$
         
     | 
| 308 | 
         
            +
                    if self.is_inplace:
         
     | 
| 309 | 
         
            +
                        half = attn.shape[0] // 2
         
     | 
| 310 | 
         
            +
                        attn[half:] = attn[half:].softmax(dim=-1)
         
     | 
| 311 | 
         
            +
                        attn[:half] = attn[:half].softmax(dim=-1)
         
     | 
| 312 | 
         
            +
                    else:
         
     | 
| 313 | 
         
            +
                        attn = attn.softmax(dim=-1)
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                    # Compute attention output
         
     | 
| 316 | 
         
            +
                    # $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$
         
     | 
| 317 | 
         
            +
                    # attn: [bs, 20, 64, 1]
         
     | 
| 318 | 
         
            +
                    # v: [bs, 1, 20, 32]
         
     | 
| 319 | 
         
            +
                    out = torch.einsum("bhij,bjhd->bihd", attn, v)
         
     | 
| 320 | 
         
            +
                    # Reshape to `[batch_size, height * width, n_heads * d_head]`
         
     | 
| 321 | 
         
            +
                    out = out.reshape(*out.shape[:2], -1)
         
     | 
| 322 | 
         
            +
                    # Map to `[batch_size, height * width, d_model]` with a linear layer
         
     | 
| 323 | 
         
            +
                    return self.to_out(out)
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
             
     | 
| 326 | 
         
            +
            # class CrossAttention(nn.Module):
         
     | 
| 327 | 
         
            +
            # def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
         
     | 
| 328 | 
         
            +
            #     super().__init__()
         
     | 
| 329 | 
         
            +
            #     inner_dim = dim_head * heads
         
     | 
| 330 | 
         
            +
            #     context_dim = default(context_dim, query_dim)
         
     | 
| 331 | 
         
            +
             
     | 
| 332 | 
         
            +
            #     self.scale = dim_head ** -0.5
         
     | 
| 333 | 
         
            +
            #     self.heads = heads
         
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
            #     self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
         
     | 
| 336 | 
         
            +
            #     self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         
     | 
| 337 | 
         
            +
            #     self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         
     | 
| 338 | 
         
            +
             
     | 
| 339 | 
         
            +
            #     self.to_out = nn.Sequential(
         
     | 
| 340 | 
         
            +
            #         nn.Linear(inner_dim, query_dim),
         
     | 
| 341 | 
         
            +
            #         nn.Dropout(dropout)
         
     | 
| 342 | 
         
            +
            #     )
         
     | 
| 343 | 
         
            +
             
     | 
| 344 | 
         
            +
            # def forward(self, x, context=None, mask=None):
         
     | 
| 345 | 
         
            +
            #     h = self.heads
         
     | 
| 346 | 
         
            +
             
     | 
| 347 | 
         
            +
            #     q = self.to_q(x)
         
     | 
| 348 | 
         
            +
            #     context = default(context, x)
         
     | 
| 349 | 
         
            +
            #     k = self.to_k(context)
         
     | 
| 350 | 
         
            +
            #     v = self.to_v(context)
         
     | 
| 351 | 
         
            +
             
     | 
| 352 | 
         
            +
            #     q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
            #     sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
         
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
            #     if exists(mask):
         
     | 
| 357 | 
         
            +
            #         mask = rearrange(mask, 'b ... -> b (...)')
         
     | 
| 358 | 
         
            +
            #         max_neg_value = -torch.finfo(sim.dtype).max
         
     | 
| 359 | 
         
            +
            #         mask = repeat(mask, 'b j -> (b h) () j', h=h)
         
     | 
| 360 | 
         
            +
            #         sim.masked_fill_(~mask, max_neg_value)
         
     | 
| 361 | 
         
            +
             
     | 
| 362 | 
         
            +
            #     # attention, what we cannot get enough of
         
     | 
| 363 | 
         
            +
            #     attn = sim.softmax(dim=-1)
         
     | 
| 364 | 
         
            +
             
     | 
| 365 | 
         
            +
            #     out = einsum('b i j, b j d -> b i d', attn, v)
         
     | 
| 366 | 
         
            +
            #     out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
         
     | 
| 367 | 
         
            +
            #     return self.to_out(out)
         
     | 
| 368 | 
         
            +
             
     | 
| 369 | 
         
            +
             
     | 
| 370 | 
         
            +
            class BasicTransformerBlock(nn.Module):
         
     | 
| 371 | 
         
            +
                def __init__(
         
     | 
| 372 | 
         
            +
                    self,
         
     | 
| 373 | 
         
            +
                    dim,
         
     | 
| 374 | 
         
            +
                    n_heads,
         
     | 
| 375 | 
         
            +
                    d_head,
         
     | 
| 376 | 
         
            +
                    dropout=0.0,
         
     | 
| 377 | 
         
            +
                    context_dim=None,
         
     | 
| 378 | 
         
            +
                    gated_ff=True,
         
     | 
| 379 | 
         
            +
                    checkpoint=True,
         
     | 
| 380 | 
         
            +
                ):
         
     | 
| 381 | 
         
            +
                    super().__init__()
         
     | 
| 382 | 
         
            +
                    self.attn1 = CrossAttention(
         
     | 
| 383 | 
         
            +
                        query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
         
     | 
| 384 | 
         
            +
                    )  # is a self-attention
         
     | 
| 385 | 
         
            +
                    self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
         
     | 
| 386 | 
         
            +
                    self.attn2 = CrossAttention(
         
     | 
| 387 | 
         
            +
                        query_dim=dim,
         
     | 
| 388 | 
         
            +
                        context_dim=context_dim,
         
     | 
| 389 | 
         
            +
                        heads=n_heads,
         
     | 
| 390 | 
         
            +
                        dim_head=d_head,
         
     | 
| 391 | 
         
            +
                        dropout=dropout,
         
     | 
| 392 | 
         
            +
                    )  # is self-attn if context is none
         
     | 
| 393 | 
         
            +
                    self.norm1 = nn.LayerNorm(dim)
         
     | 
| 394 | 
         
            +
                    self.norm2 = nn.LayerNorm(dim)
         
     | 
| 395 | 
         
            +
                    self.norm3 = nn.LayerNorm(dim)
         
     | 
| 396 | 
         
            +
                    self.checkpoint = checkpoint
         
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
                def forward(self, x, context=None):
         
     | 
| 399 | 
         
            +
                    if context is None:
         
     | 
| 400 | 
         
            +
                        return checkpoint(self._forward, (x,), self.parameters(), self.checkpoint)
         
     | 
| 401 | 
         
            +
                    else:
         
     | 
| 402 | 
         
            +
                        return checkpoint(
         
     | 
| 403 | 
         
            +
                            self._forward, (x, context), self.parameters(), self.checkpoint
         
     | 
| 404 | 
         
            +
                        )
         
     | 
| 405 | 
         
            +
             
     | 
| 406 | 
         
            +
                def _forward(self, x, context=None):
         
     | 
| 407 | 
         
            +
                    x = self.attn1(self.norm1(x)) + x
         
     | 
| 408 | 
         
            +
                    x = self.attn2(self.norm2(x), context=context) + x
         
     | 
| 409 | 
         
            +
                    x = self.ff(self.norm3(x)) + x
         
     | 
| 410 | 
         
            +
                    return x
         
     | 
| 411 | 
         
            +
             
     | 
| 412 | 
         
            +
             
     | 
| 413 | 
         
            +
            class SpatialTransformer(nn.Module):
         
     | 
| 414 | 
         
            +
                """
         
     | 
| 415 | 
         
            +
                Transformer block for image-like data.
         
     | 
| 416 | 
         
            +
                First, project the input (aka embedding)
         
     | 
| 417 | 
         
            +
                and reshape to b, t, d.
         
     | 
| 418 | 
         
            +
                Then apply standard transformer action.
         
     | 
| 419 | 
         
            +
                Finally, reshape to image
         
     | 
| 420 | 
         
            +
                """
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
                def __init__(
         
     | 
| 423 | 
         
            +
                    self,
         
     | 
| 424 | 
         
            +
                    in_channels,
         
     | 
| 425 | 
         
            +
                    n_heads,
         
     | 
| 426 | 
         
            +
                    d_head,
         
     | 
| 427 | 
         
            +
                    depth=1,
         
     | 
| 428 | 
         
            +
                    dropout=0.0,
         
     | 
| 429 | 
         
            +
                    context_dim=None,
         
     | 
| 430 | 
         
            +
                    no_context=False,
         
     | 
| 431 | 
         
            +
                ):
         
     | 
| 432 | 
         
            +
                    super().__init__()
         
     | 
| 433 | 
         
            +
             
     | 
| 434 | 
         
            +
                    if no_context:
         
     | 
| 435 | 
         
            +
                        context_dim = None
         
     | 
| 436 | 
         
            +
             
     | 
| 437 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 438 | 
         
            +
                    inner_dim = n_heads * d_head
         
     | 
| 439 | 
         
            +
                    self.norm = Normalize(in_channels)
         
     | 
| 440 | 
         
            +
             
     | 
| 441 | 
         
            +
                    self.proj_in = nn.Conv2d(
         
     | 
| 442 | 
         
            +
                        in_channels, inner_dim, kernel_size=1, stride=1, padding=0
         
     | 
| 443 | 
         
            +
                    )
         
     | 
| 444 | 
         
            +
             
     | 
| 445 | 
         
            +
                    self.transformer_blocks = nn.ModuleList(
         
     | 
| 446 | 
         
            +
                        [
         
     | 
| 447 | 
         
            +
                            BasicTransformerBlock(
         
     | 
| 448 | 
         
            +
                                inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim
         
     | 
| 449 | 
         
            +
                            )
         
     | 
| 450 | 
         
            +
                            for d in range(depth)
         
     | 
| 451 | 
         
            +
                        ]
         
     | 
| 452 | 
         
            +
                    )
         
     | 
| 453 | 
         
            +
             
     | 
| 454 | 
         
            +
                    self.proj_out = zero_module(
         
     | 
| 455 | 
         
            +
                        nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
         
     | 
| 456 | 
         
            +
                    )
         
     | 
| 457 | 
         
            +
             
     | 
| 458 | 
         
            +
                def forward(self, x, context=None):
         
     | 
| 459 | 
         
            +
                    # note: if no context is given, cross-attention defaults to self-attention
         
     | 
| 460 | 
         
            +
                    b, c, h, w = x.shape
         
     | 
| 461 | 
         
            +
                    x_in = x
         
     | 
| 462 | 
         
            +
                    x = self.norm(x)
         
     | 
| 463 | 
         
            +
                    x = self.proj_in(x)
         
     | 
| 464 | 
         
            +
                    x = rearrange(x, "b c h w -> b (h w) c")
         
     | 
| 465 | 
         
            +
                    for block in self.transformer_blocks:
         
     | 
| 466 | 
         
            +
                        x = block(x, context=context)
         
     | 
| 467 | 
         
            +
                    x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
         
     | 
| 468 | 
         
            +
                    x = self.proj_out(x)
         
     | 
| 469 | 
         
            +
                    return x + x_in
         
     | 
    	
        audioldm/latent_diffusion/ddim.py
    ADDED
    
    | 
         @@ -0,0 +1,377 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """SAMPLING ONLY."""
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import numpy as np
         
     | 
| 5 | 
         
            +
            from tqdm import tqdm
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            from audioldm.latent_diffusion.util import (
         
     | 
| 8 | 
         
            +
                make_ddim_sampling_parameters,
         
     | 
| 9 | 
         
            +
                make_ddim_timesteps,
         
     | 
| 10 | 
         
            +
                noise_like,
         
     | 
| 11 | 
         
            +
                extract_into_tensor,
         
     | 
| 12 | 
         
            +
            )
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            class DDIMSampler(object):
         
     | 
| 16 | 
         
            +
                def __init__(self, model, schedule="linear", **kwargs):
         
     | 
| 17 | 
         
            +
                    super().__init__()
         
     | 
| 18 | 
         
            +
                    self.model = model
         
     | 
| 19 | 
         
            +
                    self.ddpm_num_timesteps = model.num_timesteps
         
     | 
| 20 | 
         
            +
                    self.schedule = schedule
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
                def register_buffer(self, name, attr):
         
     | 
| 23 | 
         
            +
                    if type(attr) == torch.Tensor:
         
     | 
| 24 | 
         
            +
                        if attr.device != torch.device("cuda"):
         
     | 
| 25 | 
         
            +
                            attr = attr.to(torch.device("cuda"))
         
     | 
| 26 | 
         
            +
                    setattr(self, name, attr)
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                def make_schedule(
         
     | 
| 29 | 
         
            +
                    self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
         
     | 
| 30 | 
         
            +
                ):
         
     | 
| 31 | 
         
            +
                    self.ddim_timesteps = make_ddim_timesteps(
         
     | 
| 32 | 
         
            +
                        ddim_discr_method=ddim_discretize,
         
     | 
| 33 | 
         
            +
                        num_ddim_timesteps=ddim_num_steps,
         
     | 
| 34 | 
         
            +
                        num_ddpm_timesteps=self.ddpm_num_timesteps,
         
     | 
| 35 | 
         
            +
                        verbose=verbose,
         
     | 
| 36 | 
         
            +
                    )
         
     | 
| 37 | 
         
            +
                    alphas_cumprod = self.model.alphas_cumprod
         
     | 
| 38 | 
         
            +
                    assert (
         
     | 
| 39 | 
         
            +
                        alphas_cumprod.shape[0] == self.ddpm_num_timesteps
         
     | 
| 40 | 
         
            +
                    ), "alphas have to be defined for each timestep"
         
     | 
| 41 | 
         
            +
                    to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                    self.register_buffer("betas", to_torch(self.model.betas))
         
     | 
| 44 | 
         
            +
                    self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
         
     | 
| 45 | 
         
            +
                    self.register_buffer(
         
     | 
| 46 | 
         
            +
                        "alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
         
     | 
| 47 | 
         
            +
                    )
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                    # calculations for diffusion q(x_t | x_{t-1}) and others
         
     | 
| 50 | 
         
            +
                    self.register_buffer(
         
     | 
| 51 | 
         
            +
                        "sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
         
     | 
| 52 | 
         
            +
                    )
         
     | 
| 53 | 
         
            +
                    self.register_buffer(
         
     | 
| 54 | 
         
            +
                        "sqrt_one_minus_alphas_cumprod",
         
     | 
| 55 | 
         
            +
                        to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
         
     | 
| 56 | 
         
            +
                    )
         
     | 
| 57 | 
         
            +
                    self.register_buffer(
         
     | 
| 58 | 
         
            +
                        "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
         
     | 
| 59 | 
         
            +
                    )
         
     | 
| 60 | 
         
            +
                    self.register_buffer(
         
     | 
| 61 | 
         
            +
                        "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
         
     | 
| 62 | 
         
            +
                    )
         
     | 
| 63 | 
         
            +
                    self.register_buffer(
         
     | 
| 64 | 
         
            +
                        "sqrt_recipm1_alphas_cumprod",
         
     | 
| 65 | 
         
            +
                        to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
         
     | 
| 66 | 
         
            +
                    )
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                    # ddim sampling parameters
         
     | 
| 69 | 
         
            +
                    ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
         
     | 
| 70 | 
         
            +
                        alphacums=alphas_cumprod.cpu(),
         
     | 
| 71 | 
         
            +
                        ddim_timesteps=self.ddim_timesteps,
         
     | 
| 72 | 
         
            +
                        eta=ddim_eta,
         
     | 
| 73 | 
         
            +
                        verbose=verbose,
         
     | 
| 74 | 
         
            +
                    )
         
     | 
| 75 | 
         
            +
                    self.register_buffer("ddim_sigmas", ddim_sigmas)
         
     | 
| 76 | 
         
            +
                    self.register_buffer("ddim_alphas", ddim_alphas)
         
     | 
| 77 | 
         
            +
                    self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
         
     | 
| 78 | 
         
            +
                    self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
         
     | 
| 79 | 
         
            +
                    sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
         
     | 
| 80 | 
         
            +
                        (1 - self.alphas_cumprod_prev)
         
     | 
| 81 | 
         
            +
                        / (1 - self.alphas_cumprod)
         
     | 
| 82 | 
         
            +
                        * (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
         
     | 
| 83 | 
         
            +
                    )
         
     | 
| 84 | 
         
            +
                    self.register_buffer(
         
     | 
| 85 | 
         
            +
                        "ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
         
     | 
| 86 | 
         
            +
                    )
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                @torch.no_grad()
         
     | 
| 89 | 
         
            +
                def sample(
         
     | 
| 90 | 
         
            +
                    self,
         
     | 
| 91 | 
         
            +
                    S,
         
     | 
| 92 | 
         
            +
                    batch_size,
         
     | 
| 93 | 
         
            +
                    shape,
         
     | 
| 94 | 
         
            +
                    conditioning=None,
         
     | 
| 95 | 
         
            +
                    callback=None,
         
     | 
| 96 | 
         
            +
                    normals_sequence=None,
         
     | 
| 97 | 
         
            +
                    img_callback=None,
         
     | 
| 98 | 
         
            +
                    quantize_x0=False,
         
     | 
| 99 | 
         
            +
                    eta=0.0,
         
     | 
| 100 | 
         
            +
                    mask=None,
         
     | 
| 101 | 
         
            +
                    x0=None,
         
     | 
| 102 | 
         
            +
                    temperature=1.0,
         
     | 
| 103 | 
         
            +
                    noise_dropout=0.0,
         
     | 
| 104 | 
         
            +
                    score_corrector=None,
         
     | 
| 105 | 
         
            +
                    corrector_kwargs=None,
         
     | 
| 106 | 
         
            +
                    verbose=True,
         
     | 
| 107 | 
         
            +
                    x_T=None,
         
     | 
| 108 | 
         
            +
                    log_every_t=100,
         
     | 
| 109 | 
         
            +
                    unconditional_guidance_scale=1.0,
         
     | 
| 110 | 
         
            +
                    unconditional_conditioning=None,
         
     | 
| 111 | 
         
            +
                    # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
         
     | 
| 112 | 
         
            +
                    **kwargs,
         
     | 
| 113 | 
         
            +
                ):
         
     | 
| 114 | 
         
            +
                    if conditioning is not None:
         
     | 
| 115 | 
         
            +
                        if isinstance(conditioning, dict):
         
     | 
| 116 | 
         
            +
                            cbs = conditioning[list(conditioning.keys())[0]].shape[0]
         
     | 
| 117 | 
         
            +
                            if cbs != batch_size:
         
     | 
| 118 | 
         
            +
                                print(
         
     | 
| 119 | 
         
            +
                                    f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
         
     | 
| 120 | 
         
            +
                                )
         
     | 
| 121 | 
         
            +
                        else:
         
     | 
| 122 | 
         
            +
                            if conditioning.shape[0] != batch_size:
         
     | 
| 123 | 
         
            +
                                print(
         
     | 
| 124 | 
         
            +
                                    f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
         
     | 
| 125 | 
         
            +
                                )
         
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
                    self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
         
     | 
| 128 | 
         
            +
                    # sampling
         
     | 
| 129 | 
         
            +
                    C, H, W = shape
         
     | 
| 130 | 
         
            +
                    size = (batch_size, C, H, W)
         
     | 
| 131 | 
         
            +
                    samples, intermediates = self.ddim_sampling(
         
     | 
| 132 | 
         
            +
                        conditioning,
         
     | 
| 133 | 
         
            +
                        size,
         
     | 
| 134 | 
         
            +
                        callback=callback,
         
     | 
| 135 | 
         
            +
                        img_callback=img_callback,
         
     | 
| 136 | 
         
            +
                        quantize_denoised=quantize_x0,
         
     | 
| 137 | 
         
            +
                        mask=mask,
         
     | 
| 138 | 
         
            +
                        x0=x0,
         
     | 
| 139 | 
         
            +
                        ddim_use_original_steps=False,
         
     | 
| 140 | 
         
            +
                        noise_dropout=noise_dropout,
         
     | 
| 141 | 
         
            +
                        temperature=temperature,
         
     | 
| 142 | 
         
            +
                        score_corrector=score_corrector,
         
     | 
| 143 | 
         
            +
                        corrector_kwargs=corrector_kwargs,
         
     | 
| 144 | 
         
            +
                        x_T=x_T,
         
     | 
| 145 | 
         
            +
                        log_every_t=log_every_t,
         
     | 
| 146 | 
         
            +
                        unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 147 | 
         
            +
                        unconditional_conditioning=unconditional_conditioning,
         
     | 
| 148 | 
         
            +
                    )
         
     | 
| 149 | 
         
            +
                    return samples, intermediates
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                @torch.no_grad()
         
     | 
| 152 | 
         
            +
                def ddim_sampling(
         
     | 
| 153 | 
         
            +
                    self,
         
     | 
| 154 | 
         
            +
                    cond,
         
     | 
| 155 | 
         
            +
                    shape,
         
     | 
| 156 | 
         
            +
                    x_T=None,
         
     | 
| 157 | 
         
            +
                    ddim_use_original_steps=False,
         
     | 
| 158 | 
         
            +
                    callback=None,
         
     | 
| 159 | 
         
            +
                    timesteps=None,
         
     | 
| 160 | 
         
            +
                    quantize_denoised=False,
         
     | 
| 161 | 
         
            +
                    mask=None,
         
     | 
| 162 | 
         
            +
                    x0=None,
         
     | 
| 163 | 
         
            +
                    img_callback=None,
         
     | 
| 164 | 
         
            +
                    log_every_t=100,
         
     | 
| 165 | 
         
            +
                    temperature=1.0,
         
     | 
| 166 | 
         
            +
                    noise_dropout=0.0,
         
     | 
| 167 | 
         
            +
                    score_corrector=None,
         
     | 
| 168 | 
         
            +
                    corrector_kwargs=None,
         
     | 
| 169 | 
         
            +
                    unconditional_guidance_scale=1.0,
         
     | 
| 170 | 
         
            +
                    unconditional_conditioning=None,
         
     | 
| 171 | 
         
            +
                ):
         
     | 
| 172 | 
         
            +
                    device = self.model.betas.device
         
     | 
| 173 | 
         
            +
                    b = shape[0]
         
     | 
| 174 | 
         
            +
                    if x_T is None:
         
     | 
| 175 | 
         
            +
                        img = torch.randn(shape, device=device)
         
     | 
| 176 | 
         
            +
                    else:
         
     | 
| 177 | 
         
            +
                        img = x_T
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                    if timesteps is None:
         
     | 
| 180 | 
         
            +
                        timesteps = (
         
     | 
| 181 | 
         
            +
                            self.ddpm_num_timesteps
         
     | 
| 182 | 
         
            +
                            if ddim_use_original_steps
         
     | 
| 183 | 
         
            +
                            else self.ddim_timesteps
         
     | 
| 184 | 
         
            +
                        )
         
     | 
| 185 | 
         
            +
                    elif timesteps is not None and not ddim_use_original_steps:
         
     | 
| 186 | 
         
            +
                        subset_end = (
         
     | 
| 187 | 
         
            +
                            int(
         
     | 
| 188 | 
         
            +
                                min(timesteps / self.ddim_timesteps.shape[0], 1)
         
     | 
| 189 | 
         
            +
                                * self.ddim_timesteps.shape[0]
         
     | 
| 190 | 
         
            +
                            )
         
     | 
| 191 | 
         
            +
                            - 1
         
     | 
| 192 | 
         
            +
                        )
         
     | 
| 193 | 
         
            +
                        timesteps = self.ddim_timesteps[:subset_end]
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
                    intermediates = {"x_inter": [img], "pred_x0": [img]}
         
     | 
| 196 | 
         
            +
                    time_range = (
         
     | 
| 197 | 
         
            +
                        reversed(range(0, timesteps))
         
     | 
| 198 | 
         
            +
                        if ddim_use_original_steps
         
     | 
| 199 | 
         
            +
                        else np.flip(timesteps)
         
     | 
| 200 | 
         
            +
                    )
         
     | 
| 201 | 
         
            +
                    total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
         
     | 
| 202 | 
         
            +
                    # print(f"Running DDIM Sampling with {total_steps} timesteps")
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                    # iterator = gr.Progress().tqdm(time_range, desc="DDIM Sampler", total=total_steps)
         
     | 
| 205 | 
         
            +
                    iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps, leave=False)
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                    for i, step in enumerate(iterator):
         
     | 
| 208 | 
         
            +
                        index = total_steps - i - 1
         
     | 
| 209 | 
         
            +
                        ts = torch.full((b,), step, device=device, dtype=torch.long)
         
     | 
| 210 | 
         
            +
                        if mask is not None:
         
     | 
| 211 | 
         
            +
                            assert x0 is not None
         
     | 
| 212 | 
         
            +
                            img_orig = self.model.q_sample(
         
     | 
| 213 | 
         
            +
                                x0, ts
         
     | 
| 214 | 
         
            +
                            )  # TODO deterministic forward pass?
         
     | 
| 215 | 
         
            +
                            img = (
         
     | 
| 216 | 
         
            +
                                img_orig * mask + (1.0 - mask) * img
         
     | 
| 217 | 
         
            +
                            )  # In the first sampling step, img is pure gaussian noise
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
                        outs = self.p_sample_ddim(
         
     | 
| 220 | 
         
            +
                            img,
         
     | 
| 221 | 
         
            +
                            cond,
         
     | 
| 222 | 
         
            +
                            ts,
         
     | 
| 223 | 
         
            +
                            index=index,
         
     | 
| 224 | 
         
            +
                            use_original_steps=ddim_use_original_steps,
         
     | 
| 225 | 
         
            +
                            quantize_denoised=quantize_denoised,
         
     | 
| 226 | 
         
            +
                            temperature=temperature,
         
     | 
| 227 | 
         
            +
                            noise_dropout=noise_dropout,
         
     | 
| 228 | 
         
            +
                            score_corrector=score_corrector,
         
     | 
| 229 | 
         
            +
                            corrector_kwargs=corrector_kwargs,
         
     | 
| 230 | 
         
            +
                            unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 231 | 
         
            +
                            unconditional_conditioning=unconditional_conditioning,
         
     | 
| 232 | 
         
            +
                        )
         
     | 
| 233 | 
         
            +
                        img, pred_x0 = outs
         
     | 
| 234 | 
         
            +
                        if callback:
         
     | 
| 235 | 
         
            +
                            callback(i)
         
     | 
| 236 | 
         
            +
                        if img_callback:
         
     | 
| 237 | 
         
            +
                            img_callback(pred_x0, i)
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
                        if index % log_every_t == 0 or index == total_steps - 1:
         
     | 
| 240 | 
         
            +
                            intermediates["x_inter"].append(img)
         
     | 
| 241 | 
         
            +
                            intermediates["pred_x0"].append(pred_x0)
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
                    return img, intermediates
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
                @torch.no_grad()
         
     | 
| 246 | 
         
            +
                def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
         
     | 
| 247 | 
         
            +
                    # fast, but does not allow for exact reconstruction
         
     | 
| 248 | 
         
            +
                    # t serves as an index to gather the correct alphas
         
     | 
| 249 | 
         
            +
                    if use_original_steps:
         
     | 
| 250 | 
         
            +
                        sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
         
     | 
| 251 | 
         
            +
                        sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
         
     | 
| 252 | 
         
            +
                    else:
         
     | 
| 253 | 
         
            +
                        sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
         
     | 
| 254 | 
         
            +
                        sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
         
     | 
| 255 | 
         
            +
             
     | 
| 256 | 
         
            +
                    if noise is None:
         
     | 
| 257 | 
         
            +
                        noise = torch.randn_like(x0)
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
                    return (
         
     | 
| 260 | 
         
            +
                        extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
         
     | 
| 261 | 
         
            +
                        + extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise
         
     | 
| 262 | 
         
            +
                    )
         
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
                @torch.no_grad()
         
     | 
| 265 | 
         
            +
                def decode(
         
     | 
| 266 | 
         
            +
                    self,
         
     | 
| 267 | 
         
            +
                    x_latent,
         
     | 
| 268 | 
         
            +
                    cond,
         
     | 
| 269 | 
         
            +
                    t_start,
         
     | 
| 270 | 
         
            +
                    unconditional_guidance_scale=1.0,
         
     | 
| 271 | 
         
            +
                    unconditional_conditioning=None,
         
     | 
| 272 | 
         
            +
                    use_original_steps=False,
         
     | 
| 273 | 
         
            +
                ):
         
     | 
| 274 | 
         
            +
             
     | 
| 275 | 
         
            +
                    timesteps = (
         
     | 
| 276 | 
         
            +
                        np.arange(self.ddpm_num_timesteps)
         
     | 
| 277 | 
         
            +
                        if use_original_steps
         
     | 
| 278 | 
         
            +
                        else self.ddim_timesteps
         
     | 
| 279 | 
         
            +
                    )
         
     | 
| 280 | 
         
            +
                    timesteps = timesteps[:t_start]
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                    time_range = np.flip(timesteps)
         
     | 
| 283 | 
         
            +
                    total_steps = timesteps.shape[0]
         
     | 
| 284 | 
         
            +
                    # print(f"Running DDIM Sampling with {total_steps} timesteps")
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
                    # iterator = gr.Progress().tqdm(time_range, desc="Decoding image", total=total_steps)
         
     | 
| 287 | 
         
            +
                    iterator = tqdm(time_range, desc="Decoding image", total=total_steps)
         
     | 
| 288 | 
         
            +
                    x_dec = x_latent
         
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
                    for i, step in enumerate(iterator):
         
     | 
| 291 | 
         
            +
                        index = total_steps - i - 1
         
     | 
| 292 | 
         
            +
                        ts = torch.full(
         
     | 
| 293 | 
         
            +
                            (x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long
         
     | 
| 294 | 
         
            +
                        )
         
     | 
| 295 | 
         
            +
                        x_dec, _ = self.p_sample_ddim(
         
     | 
| 296 | 
         
            +
                            x_dec,
         
     | 
| 297 | 
         
            +
                            cond,
         
     | 
| 298 | 
         
            +
                            ts,
         
     | 
| 299 | 
         
            +
                            index=index,
         
     | 
| 300 | 
         
            +
                            use_original_steps=use_original_steps,
         
     | 
| 301 | 
         
            +
                            unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 302 | 
         
            +
                            unconditional_conditioning=unconditional_conditioning,
         
     | 
| 303 | 
         
            +
                        )
         
     | 
| 304 | 
         
            +
                    return x_dec
         
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
                @torch.no_grad()
         
     | 
| 307 | 
         
            +
                def p_sample_ddim(
         
     | 
| 308 | 
         
            +
                    self,
         
     | 
| 309 | 
         
            +
                    x,
         
     | 
| 310 | 
         
            +
                    c,
         
     | 
| 311 | 
         
            +
                    t,
         
     | 
| 312 | 
         
            +
                    index,
         
     | 
| 313 | 
         
            +
                    repeat_noise=False,
         
     | 
| 314 | 
         
            +
                    use_original_steps=False,
         
     | 
| 315 | 
         
            +
                    quantize_denoised=False,
         
     | 
| 316 | 
         
            +
                    temperature=1.0,
         
     | 
| 317 | 
         
            +
                    noise_dropout=0.0,
         
     | 
| 318 | 
         
            +
                    score_corrector=None,
         
     | 
| 319 | 
         
            +
                    corrector_kwargs=None,
         
     | 
| 320 | 
         
            +
                    unconditional_guidance_scale=1.0,
         
     | 
| 321 | 
         
            +
                    unconditional_conditioning=None,
         
     | 
| 322 | 
         
            +
                ):
         
     | 
| 323 | 
         
            +
                    b, *_, device = *x.shape, x.device
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                    if unconditional_conditioning is None or unconditional_guidance_scale == 1.0:
         
     | 
| 326 | 
         
            +
                        e_t = self.model.apply_model(x, t, c)
         
     | 
| 327 | 
         
            +
                    else:
         
     | 
| 328 | 
         
            +
                        x_in = torch.cat([x] * 2)
         
     | 
| 329 | 
         
            +
                        t_in = torch.cat([t] * 2)
         
     | 
| 330 | 
         
            +
                        c_in = torch.cat([unconditional_conditioning, c])
         
     | 
| 331 | 
         
            +
                        e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
         
     | 
| 332 | 
         
            +
                        # When unconditional_guidance_scale == 1: only e_t
         
     | 
| 333 | 
         
            +
                        # When unconditional_guidance_scale == 0: only unconditional
         
     | 
| 334 | 
         
            +
                        # When unconditional_guidance_scale > 1: add more unconditional guidance
         
     | 
| 335 | 
         
            +
                        e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                    if score_corrector is not None:
         
     | 
| 338 | 
         
            +
                        assert self.model.parameterization == "eps"
         
     | 
| 339 | 
         
            +
                        e_t = score_corrector.modify_score(
         
     | 
| 340 | 
         
            +
                            self.model, e_t, x, t, c, **corrector_kwargs
         
     | 
| 341 | 
         
            +
                        )
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
                    alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
         
     | 
| 344 | 
         
            +
                    alphas_prev = (
         
     | 
| 345 | 
         
            +
                        self.model.alphas_cumprod_prev
         
     | 
| 346 | 
         
            +
                        if use_original_steps
         
     | 
| 347 | 
         
            +
                        else self.ddim_alphas_prev
         
     | 
| 348 | 
         
            +
                    )
         
     | 
| 349 | 
         
            +
                    sqrt_one_minus_alphas = (
         
     | 
| 350 | 
         
            +
                        self.model.sqrt_one_minus_alphas_cumprod
         
     | 
| 351 | 
         
            +
                        if use_original_steps
         
     | 
| 352 | 
         
            +
                        else self.ddim_sqrt_one_minus_alphas
         
     | 
| 353 | 
         
            +
                    )
         
     | 
| 354 | 
         
            +
                    sigmas = (
         
     | 
| 355 | 
         
            +
                        self.model.ddim_sigmas_for_original_num_steps
         
     | 
| 356 | 
         
            +
                        if use_original_steps
         
     | 
| 357 | 
         
            +
                        else self.ddim_sigmas
         
     | 
| 358 | 
         
            +
                    )
         
     | 
| 359 | 
         
            +
                    # select parameters corresponding to the currently considered timestep
         
     | 
| 360 | 
         
            +
                    a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
         
     | 
| 361 | 
         
            +
                    a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
         
     | 
| 362 | 
         
            +
                    sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
         
     | 
| 363 | 
         
            +
                    sqrt_one_minus_at = torch.full(
         
     | 
| 364 | 
         
            +
                        (b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
         
     | 
| 365 | 
         
            +
                    )
         
     | 
| 366 | 
         
            +
             
     | 
| 367 | 
         
            +
                    # current prediction for x_0
         
     | 
| 368 | 
         
            +
                    pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
         
     | 
| 369 | 
         
            +
                    if quantize_denoised:
         
     | 
| 370 | 
         
            +
                        pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
         
     | 
| 371 | 
         
            +
                    # direction pointing to x_t
         
     | 
| 372 | 
         
            +
                    dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
         
     | 
| 373 | 
         
            +
                    noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
         
     | 
| 374 | 
         
            +
                    if noise_dropout > 0.0:
         
     | 
| 375 | 
         
            +
                        noise = torch.nn.functional.dropout(noise, p=noise_dropout)
         
     | 
| 376 | 
         
            +
                    x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise  # TODO
         
     | 
| 377 | 
         
            +
                    return x_prev, pred_x0
         
     | 
    	
        audioldm/latent_diffusion/ddpm.py
    ADDED
    
    | 
         @@ -0,0 +1,441 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """
         
     | 
| 2 | 
         
            +
            wild mixture of
         
     | 
| 3 | 
         
            +
            https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
         
     | 
| 4 | 
         
            +
            https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
         
     | 
| 5 | 
         
            +
            https://github.com/CompVis/taming-transformers
         
     | 
| 6 | 
         
            +
            -- merci
         
     | 
| 7 | 
         
            +
            """
         
     | 
| 8 | 
         
            +
            import sys
         
     | 
| 9 | 
         
            +
            import os
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            import torch
         
     | 
| 12 | 
         
            +
            import torch.nn as nn
         
     | 
| 13 | 
         
            +
            import numpy as np
         
     | 
| 14 | 
         
            +
            from contextlib import contextmanager
         
     | 
| 15 | 
         
            +
            from functools import partial
         
     | 
| 16 | 
         
            +
            from tqdm import tqdm
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            from audioldm.utils import exists, default, count_params, instantiate_from_config
         
     | 
| 19 | 
         
            +
            from audioldm.latent_diffusion.ema import LitEma
         
     | 
| 20 | 
         
            +
            from audioldm.latent_diffusion.util import (
         
     | 
| 21 | 
         
            +
                make_beta_schedule,
         
     | 
| 22 | 
         
            +
                extract_into_tensor,
         
     | 
| 23 | 
         
            +
                noise_like,
         
     | 
| 24 | 
         
            +
            )
         
     | 
| 25 | 
         
            +
            import soundfile as sf
         
     | 
| 26 | 
         
            +
            import os
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            __conditioning_keys__ = {"concat": "c_concat", "crossattn": "c_crossattn", "adm": "y"}
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            def disabled_train(self, mode=True):
         
     | 
| 33 | 
         
            +
                """Overwrite model.train with this function to make sure train/eval mode
         
     | 
| 34 | 
         
            +
                does not change anymore."""
         
     | 
| 35 | 
         
            +
                return self
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            def uniform_on_device(r1, r2, shape, device):
         
     | 
| 39 | 
         
            +
                return (r1 - r2) * torch.rand(*shape, device=device) + r2
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            class DiffusionWrapper(nn.Module):
         
     | 
| 43 | 
         
            +
                def __init__(self, diff_model_config, conditioning_key):
         
     | 
| 44 | 
         
            +
                    super().__init__()
         
     | 
| 45 | 
         
            +
                    self.diffusion_model = instantiate_from_config(diff_model_config)
         
     | 
| 46 | 
         
            +
                    self.conditioning_key = conditioning_key
         
     | 
| 47 | 
         
            +
                    assert self.conditioning_key in [
         
     | 
| 48 | 
         
            +
                        None,
         
     | 
| 49 | 
         
            +
                        "concat",
         
     | 
| 50 | 
         
            +
                        "crossattn",
         
     | 
| 51 | 
         
            +
                        "hybrid",
         
     | 
| 52 | 
         
            +
                        "adm",
         
     | 
| 53 | 
         
            +
                        "film",
         
     | 
| 54 | 
         
            +
                    ]
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                def forward(
         
     | 
| 57 | 
         
            +
                    self, x, t, c_concat: list = None, c_crossattn: list = None, c_film: list = None
         
     | 
| 58 | 
         
            +
                ):
         
     | 
| 59 | 
         
            +
                    x = x.contiguous()
         
     | 
| 60 | 
         
            +
                    t = t.contiguous()
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                    if self.conditioning_key is None:
         
     | 
| 63 | 
         
            +
                        out = self.diffusion_model(x, t)
         
     | 
| 64 | 
         
            +
                    elif self.conditioning_key == "concat":
         
     | 
| 65 | 
         
            +
                        xc = torch.cat([x] + c_concat, dim=1)
         
     | 
| 66 | 
         
            +
                        out = self.diffusion_model(xc, t)
         
     | 
| 67 | 
         
            +
                    elif self.conditioning_key == "crossattn":
         
     | 
| 68 | 
         
            +
                        cc = torch.cat(c_crossattn, 1)
         
     | 
| 69 | 
         
            +
                        out = self.diffusion_model(x, t, context=cc)
         
     | 
| 70 | 
         
            +
                    elif self.conditioning_key == "hybrid":
         
     | 
| 71 | 
         
            +
                        xc = torch.cat([x] + c_concat, dim=1)
         
     | 
| 72 | 
         
            +
                        cc = torch.cat(c_crossattn, 1)
         
     | 
| 73 | 
         
            +
                        out = self.diffusion_model(xc, t, context=cc)
         
     | 
| 74 | 
         
            +
                    elif (
         
     | 
| 75 | 
         
            +
                        self.conditioning_key == "film"
         
     | 
| 76 | 
         
            +
                    ):  # The condition is assumed to be a global token, which wil pass through a linear layer and added with the time embedding for the FILM
         
     | 
| 77 | 
         
            +
                        cc = c_film[0].squeeze(1)  # only has one token
         
     | 
| 78 | 
         
            +
                        out = self.diffusion_model(x, t, y=cc)
         
     | 
| 79 | 
         
            +
                    elif self.conditioning_key == "adm":
         
     | 
| 80 | 
         
            +
                        cc = c_crossattn[0]
         
     | 
| 81 | 
         
            +
                        out = self.diffusion_model(x, t, y=cc)
         
     | 
| 82 | 
         
            +
                    else:
         
     | 
| 83 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                    return out
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
            class DDPM(nn.Module):
         
     | 
| 89 | 
         
            +
                # classic DDPM with Gaussian diffusion, in image space
         
     | 
| 90 | 
         
            +
                def __init__(
         
     | 
| 91 | 
         
            +
                    self,
         
     | 
| 92 | 
         
            +
                    unet_config,
         
     | 
| 93 | 
         
            +
                    timesteps=1000,
         
     | 
| 94 | 
         
            +
                    beta_schedule="linear",
         
     | 
| 95 | 
         
            +
                    loss_type="l2",
         
     | 
| 96 | 
         
            +
                    ckpt_path=None,
         
     | 
| 97 | 
         
            +
                    ignore_keys=[],
         
     | 
| 98 | 
         
            +
                    load_only_unet=False,
         
     | 
| 99 | 
         
            +
                    monitor="val/loss",
         
     | 
| 100 | 
         
            +
                    use_ema=True,
         
     | 
| 101 | 
         
            +
                    first_stage_key="image",
         
     | 
| 102 | 
         
            +
                    latent_t_size=256,
         
     | 
| 103 | 
         
            +
                    latent_f_size=16,
         
     | 
| 104 | 
         
            +
                    channels=3,
         
     | 
| 105 | 
         
            +
                    log_every_t=100,
         
     | 
| 106 | 
         
            +
                    clip_denoised=True,
         
     | 
| 107 | 
         
            +
                    linear_start=1e-4,
         
     | 
| 108 | 
         
            +
                    linear_end=2e-2,
         
     | 
| 109 | 
         
            +
                    cosine_s=8e-3,
         
     | 
| 110 | 
         
            +
                    given_betas=None,
         
     | 
| 111 | 
         
            +
                    original_elbo_weight=0.0,
         
     | 
| 112 | 
         
            +
                    v_posterior=0.0,  # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
         
     | 
| 113 | 
         
            +
                    l_simple_weight=1.0,
         
     | 
| 114 | 
         
            +
                    conditioning_key=None,
         
     | 
| 115 | 
         
            +
                    parameterization="eps",  # all assuming fixed variance schedules
         
     | 
| 116 | 
         
            +
                    scheduler_config=None,
         
     | 
| 117 | 
         
            +
                    use_positional_encodings=False,
         
     | 
| 118 | 
         
            +
                    learn_logvar=False,
         
     | 
| 119 | 
         
            +
                    logvar_init=0.0,
         
     | 
| 120 | 
         
            +
                ):
         
     | 
| 121 | 
         
            +
                    super().__init__()
         
     | 
| 122 | 
         
            +
                    assert parameterization in [
         
     | 
| 123 | 
         
            +
                        "eps",
         
     | 
| 124 | 
         
            +
                        "x0",
         
     | 
| 125 | 
         
            +
                    ], 'currently only supporting "eps" and "x0"'
         
     | 
| 126 | 
         
            +
                    self.parameterization = parameterization
         
     | 
| 127 | 
         
            +
                    self.state = None
         
     | 
| 128 | 
         
            +
                    # print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
         
     | 
| 129 | 
         
            +
                    self.cond_stage_model = None
         
     | 
| 130 | 
         
            +
                    self.clip_denoised = clip_denoised
         
     | 
| 131 | 
         
            +
                    self.log_every_t = log_every_t
         
     | 
| 132 | 
         
            +
                    self.first_stage_key = first_stage_key
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                    self.latent_t_size = latent_t_size
         
     | 
| 135 | 
         
            +
                    self.latent_f_size = latent_f_size
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                    self.channels = channels
         
     | 
| 138 | 
         
            +
                    self.use_positional_encodings = use_positional_encodings
         
     | 
| 139 | 
         
            +
                    self.model = DiffusionWrapper(unet_config, conditioning_key)
         
     | 
| 140 | 
         
            +
                    count_params(self.model, verbose=True)
         
     | 
| 141 | 
         
            +
                    self.use_ema = use_ema
         
     | 
| 142 | 
         
            +
                    if self.use_ema:
         
     | 
| 143 | 
         
            +
                        self.model_ema = LitEma(self.model)
         
     | 
| 144 | 
         
            +
                        # print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                    self.use_scheduler = scheduler_config is not None
         
     | 
| 147 | 
         
            +
                    if self.use_scheduler:
         
     | 
| 148 | 
         
            +
                        self.scheduler_config = scheduler_config
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                    self.v_posterior = v_posterior
         
     | 
| 151 | 
         
            +
                    self.original_elbo_weight = original_elbo_weight
         
     | 
| 152 | 
         
            +
                    self.l_simple_weight = l_simple_weight
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                    if monitor is not None:
         
     | 
| 155 | 
         
            +
                        self.monitor = monitor
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                    self.register_schedule(
         
     | 
| 158 | 
         
            +
                        given_betas=given_betas,
         
     | 
| 159 | 
         
            +
                        beta_schedule=beta_schedule,
         
     | 
| 160 | 
         
            +
                        timesteps=timesteps,
         
     | 
| 161 | 
         
            +
                        linear_start=linear_start,
         
     | 
| 162 | 
         
            +
                        linear_end=linear_end,
         
     | 
| 163 | 
         
            +
                        cosine_s=cosine_s,
         
     | 
| 164 | 
         
            +
                    )
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
                    self.loss_type = loss_type
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                    self.learn_logvar = learn_logvar
         
     | 
| 169 | 
         
            +
                    self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
         
     | 
| 170 | 
         
            +
                    if self.learn_logvar:
         
     | 
| 171 | 
         
            +
                        self.logvar = nn.Parameter(self.logvar, requires_grad=True)
         
     | 
| 172 | 
         
            +
                    else:
         
     | 
| 173 | 
         
            +
                        self.logvar = nn.Parameter(self.logvar, requires_grad=False)
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                    self.logger_save_dir = None
         
     | 
| 176 | 
         
            +
                    self.logger_project = None
         
     | 
| 177 | 
         
            +
                    self.logger_version = None
         
     | 
| 178 | 
         
            +
                    self.label_indices_total = None
         
     | 
| 179 | 
         
            +
                    # To avoid the system cannot find metric value for checkpoint
         
     | 
| 180 | 
         
            +
                    self.metrics_buffer = {
         
     | 
| 181 | 
         
            +
                        "val/kullback_leibler_divergence_sigmoid": 15.0,
         
     | 
| 182 | 
         
            +
                        "val/kullback_leibler_divergence_softmax": 10.0,
         
     | 
| 183 | 
         
            +
                        "val/psnr": 0.0,
         
     | 
| 184 | 
         
            +
                        "val/ssim": 0.0,
         
     | 
| 185 | 
         
            +
                        "val/inception_score_mean": 1.0,
         
     | 
| 186 | 
         
            +
                        "val/inception_score_std": 0.0,
         
     | 
| 187 | 
         
            +
                        "val/kernel_inception_distance_mean": 0.0,
         
     | 
| 188 | 
         
            +
                        "val/kernel_inception_distance_std": 0.0,
         
     | 
| 189 | 
         
            +
                        "val/frechet_inception_distance": 133.0,
         
     | 
| 190 | 
         
            +
                        "val/frechet_audio_distance": 32.0,
         
     | 
| 191 | 
         
            +
                    }
         
     | 
| 192 | 
         
            +
                    self.initial_learning_rate = None
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                def get_log_dir(self):
         
     | 
| 195 | 
         
            +
                    if (
         
     | 
| 196 | 
         
            +
                        self.logger_save_dir is None
         
     | 
| 197 | 
         
            +
                        and self.logger_project is None
         
     | 
| 198 | 
         
            +
                        and self.logger_version is None
         
     | 
| 199 | 
         
            +
                    ):
         
     | 
| 200 | 
         
            +
                        return os.path.join(
         
     | 
| 201 | 
         
            +
                            self.logger.save_dir, self.logger._project, self.logger.version
         
     | 
| 202 | 
         
            +
                        )
         
     | 
| 203 | 
         
            +
                    else:
         
     | 
| 204 | 
         
            +
                        return os.path.join(
         
     | 
| 205 | 
         
            +
                            self.logger_save_dir, self.logger_project, self.logger_version
         
     | 
| 206 | 
         
            +
                        )
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
                def set_log_dir(self, save_dir, project, version):
         
     | 
| 209 | 
         
            +
                    self.logger_save_dir = save_dir
         
     | 
| 210 | 
         
            +
                    self.logger_project = project
         
     | 
| 211 | 
         
            +
                    self.logger_version = version
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                def register_schedule(
         
     | 
| 214 | 
         
            +
                    self,
         
     | 
| 215 | 
         
            +
                    given_betas=None,
         
     | 
| 216 | 
         
            +
                    beta_schedule="linear",
         
     | 
| 217 | 
         
            +
                    timesteps=1000,
         
     | 
| 218 | 
         
            +
                    linear_start=1e-4,
         
     | 
| 219 | 
         
            +
                    linear_end=2e-2,
         
     | 
| 220 | 
         
            +
                    cosine_s=8e-3,
         
     | 
| 221 | 
         
            +
                ):
         
     | 
| 222 | 
         
            +
                    if exists(given_betas):
         
     | 
| 223 | 
         
            +
                        betas = given_betas
         
     | 
| 224 | 
         
            +
                    else:
         
     | 
| 225 | 
         
            +
                        betas = make_beta_schedule(
         
     | 
| 226 | 
         
            +
                            beta_schedule,
         
     | 
| 227 | 
         
            +
                            timesteps,
         
     | 
| 228 | 
         
            +
                            linear_start=linear_start,
         
     | 
| 229 | 
         
            +
                            linear_end=linear_end,
         
     | 
| 230 | 
         
            +
                            cosine_s=cosine_s,
         
     | 
| 231 | 
         
            +
                        )
         
     | 
| 232 | 
         
            +
                    alphas = 1.0 - betas
         
     | 
| 233 | 
         
            +
                    alphas_cumprod = np.cumprod(alphas, axis=0)
         
     | 
| 234 | 
         
            +
                    alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
                    (timesteps,) = betas.shape
         
     | 
| 237 | 
         
            +
                    self.num_timesteps = int(timesteps)
         
     | 
| 238 | 
         
            +
                    self.linear_start = linear_start
         
     | 
| 239 | 
         
            +
                    self.linear_end = linear_end
         
     | 
| 240 | 
         
            +
                    assert (
         
     | 
| 241 | 
         
            +
                        alphas_cumprod.shape[0] == self.num_timesteps
         
     | 
| 242 | 
         
            +
                    ), "alphas have to be defined for each timestep"
         
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
                    to_torch = partial(torch.tensor, dtype=torch.float32)
         
     | 
| 245 | 
         
            +
             
     | 
| 246 | 
         
            +
                    self.register_buffer("betas", to_torch(betas))
         
     | 
| 247 | 
         
            +
                    self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
         
     | 
| 248 | 
         
            +
                    self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                    # calculations for diffusion q(x_t | x_{t-1}) and others
         
     | 
| 251 | 
         
            +
                    self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
         
     | 
| 252 | 
         
            +
                    self.register_buffer(
         
     | 
| 253 | 
         
            +
                        "sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
         
     | 
| 254 | 
         
            +
                    )
         
     | 
| 255 | 
         
            +
                    self.register_buffer(
         
     | 
| 256 | 
         
            +
                        "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
         
     | 
| 257 | 
         
            +
                    )
         
     | 
| 258 | 
         
            +
                    self.register_buffer(
         
     | 
| 259 | 
         
            +
                        "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
         
     | 
| 260 | 
         
            +
                    )
         
     | 
| 261 | 
         
            +
                    self.register_buffer(
         
     | 
| 262 | 
         
            +
                        "sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
         
     | 
| 263 | 
         
            +
                    )
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
                    # calculations for posterior q(x_{t-1} | x_t, x_0)
         
     | 
| 266 | 
         
            +
                    posterior_variance = (1 - self.v_posterior) * betas * (
         
     | 
| 267 | 
         
            +
                        1.0 - alphas_cumprod_prev
         
     | 
| 268 | 
         
            +
                    ) / (1.0 - alphas_cumprod) + self.v_posterior * betas
         
     | 
| 269 | 
         
            +
                    # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
         
     | 
| 270 | 
         
            +
                    self.register_buffer("posterior_variance", to_torch(posterior_variance))
         
     | 
| 271 | 
         
            +
                    # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
         
     | 
| 272 | 
         
            +
                    self.register_buffer(
         
     | 
| 273 | 
         
            +
                        "posterior_log_variance_clipped",
         
     | 
| 274 | 
         
            +
                        to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
         
     | 
| 275 | 
         
            +
                    )
         
     | 
| 276 | 
         
            +
                    self.register_buffer(
         
     | 
| 277 | 
         
            +
                        "posterior_mean_coef1",
         
     | 
| 278 | 
         
            +
                        to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)),
         
     | 
| 279 | 
         
            +
                    )
         
     | 
| 280 | 
         
            +
                    self.register_buffer(
         
     | 
| 281 | 
         
            +
                        "posterior_mean_coef2",
         
     | 
| 282 | 
         
            +
                        to_torch(
         
     | 
| 283 | 
         
            +
                            (1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
         
     | 
| 284 | 
         
            +
                        ),
         
     | 
| 285 | 
         
            +
                    )
         
     | 
| 286 | 
         
            +
             
     | 
| 287 | 
         
            +
                    if self.parameterization == "eps":
         
     | 
| 288 | 
         
            +
                        lvlb_weights = self.betas**2 / (
         
     | 
| 289 | 
         
            +
                            2
         
     | 
| 290 | 
         
            +
                            * self.posterior_variance
         
     | 
| 291 | 
         
            +
                            * to_torch(alphas)
         
     | 
| 292 | 
         
            +
                            * (1 - self.alphas_cumprod)
         
     | 
| 293 | 
         
            +
                        )
         
     | 
| 294 | 
         
            +
                    elif self.parameterization == "x0":
         
     | 
| 295 | 
         
            +
                        lvlb_weights = (
         
     | 
| 296 | 
         
            +
                            0.5
         
     | 
| 297 | 
         
            +
                            * np.sqrt(torch.Tensor(alphas_cumprod))
         
     | 
| 298 | 
         
            +
                            / (2.0 * 1 - torch.Tensor(alphas_cumprod))
         
     | 
| 299 | 
         
            +
                        )
         
     | 
| 300 | 
         
            +
                    else:
         
     | 
| 301 | 
         
            +
                        raise NotImplementedError("mu not supported")
         
     | 
| 302 | 
         
            +
                    # TODO how to choose this term
         
     | 
| 303 | 
         
            +
                    lvlb_weights[0] = lvlb_weights[1]
         
     | 
| 304 | 
         
            +
                    self.register_buffer("lvlb_weights", lvlb_weights, persistent=False)
         
     | 
| 305 | 
         
            +
                    assert not torch.isnan(self.lvlb_weights).all()
         
     | 
| 306 | 
         
            +
             
     | 
| 307 | 
         
            +
                @contextmanager
         
     | 
| 308 | 
         
            +
                def ema_scope(self, context=None):
         
     | 
| 309 | 
         
            +
                    if self.use_ema:
         
     | 
| 310 | 
         
            +
                        self.model_ema.store(self.model.parameters())
         
     | 
| 311 | 
         
            +
                        self.model_ema.copy_to(self.model)
         
     | 
| 312 | 
         
            +
                        if context is not None:
         
     | 
| 313 | 
         
            +
                            # print(f"{context}: Switched to EMA weights")
         
     | 
| 314 | 
         
            +
                            pass
         
     | 
| 315 | 
         
            +
                    try:
         
     | 
| 316 | 
         
            +
                        yield None
         
     | 
| 317 | 
         
            +
                    finally:
         
     | 
| 318 | 
         
            +
                        if self.use_ema:
         
     | 
| 319 | 
         
            +
                            self.model_ema.restore(self.model.parameters())
         
     | 
| 320 | 
         
            +
                            if context is not None:
         
     | 
| 321 | 
         
            +
                                # print(f"{context}: Restored training weights")
         
     | 
| 322 | 
         
            +
                                pass
         
     | 
| 323 | 
         
            +
             
     | 
| 324 | 
         
            +
                def q_mean_variance(self, x_start, t):
         
     | 
| 325 | 
         
            +
                    """
         
     | 
| 326 | 
         
            +
                    Get the distribution q(x_t | x_0).
         
     | 
| 327 | 
         
            +
                    :param x_start: the [N x C x ...] tensor of noiseless inputs.
         
     | 
| 328 | 
         
            +
                    :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
         
     | 
| 329 | 
         
            +
                    :return: A tuple (mean, variance, log_variance), all of x_start's shape.
         
     | 
| 330 | 
         
            +
                    """
         
     | 
| 331 | 
         
            +
                    mean = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
         
     | 
| 332 | 
         
            +
                    variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
         
     | 
| 333 | 
         
            +
                    log_variance = extract_into_tensor(
         
     | 
| 334 | 
         
            +
                        self.log_one_minus_alphas_cumprod, t, x_start.shape
         
     | 
| 335 | 
         
            +
                    )
         
     | 
| 336 | 
         
            +
                    return mean, variance, log_variance
         
     | 
| 337 | 
         
            +
             
     | 
| 338 | 
         
            +
                def predict_start_from_noise(self, x_t, t, noise):
         
     | 
| 339 | 
         
            +
                    return (
         
     | 
| 340 | 
         
            +
                        extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
         
     | 
| 341 | 
         
            +
                        - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
         
     | 
| 342 | 
         
            +
                        * noise
         
     | 
| 343 | 
         
            +
                    )
         
     | 
| 344 | 
         
            +
             
     | 
| 345 | 
         
            +
                def q_posterior(self, x_start, x_t, t):
         
     | 
| 346 | 
         
            +
                    posterior_mean = (
         
     | 
| 347 | 
         
            +
                        extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
         
     | 
| 348 | 
         
            +
                        + extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
         
     | 
| 349 | 
         
            +
                    )
         
     | 
| 350 | 
         
            +
                    posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
         
     | 
| 351 | 
         
            +
                    posterior_log_variance_clipped = extract_into_tensor(
         
     | 
| 352 | 
         
            +
                        self.posterior_log_variance_clipped, t, x_t.shape
         
     | 
| 353 | 
         
            +
                    )
         
     | 
| 354 | 
         
            +
                    return posterior_mean, posterior_variance, posterior_log_variance_clipped
         
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
                def p_mean_variance(self, x, t, clip_denoised: bool):
         
     | 
| 357 | 
         
            +
                    model_out = self.model(x, t)
         
     | 
| 358 | 
         
            +
                    if self.parameterization == "eps":
         
     | 
| 359 | 
         
            +
                        x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
         
     | 
| 360 | 
         
            +
                    elif self.parameterization == "x0":
         
     | 
| 361 | 
         
            +
                        x_recon = model_out
         
     | 
| 362 | 
         
            +
                    if clip_denoised:
         
     | 
| 363 | 
         
            +
                        x_recon.clamp_(-1.0, 1.0)
         
     | 
| 364 | 
         
            +
             
     | 
| 365 | 
         
            +
                    model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
         
     | 
| 366 | 
         
            +
                        x_start=x_recon, x_t=x, t=t
         
     | 
| 367 | 
         
            +
                    )
         
     | 
| 368 | 
         
            +
                    return model_mean, posterior_variance, posterior_log_variance
         
     | 
| 369 | 
         
            +
             
     | 
| 370 | 
         
            +
                @torch.no_grad()
         
     | 
| 371 | 
         
            +
                def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
         
     | 
| 372 | 
         
            +
                    b, *_, device = *x.shape, x.device
         
     | 
| 373 | 
         
            +
                    model_mean, _, model_log_variance = self.p_mean_variance(
         
     | 
| 374 | 
         
            +
                        x=x, t=t, clip_denoised=clip_denoised
         
     | 
| 375 | 
         
            +
                    )
         
     | 
| 376 | 
         
            +
                    noise = noise_like(x.shape, device, repeat_noise)
         
     | 
| 377 | 
         
            +
                    # no noise when t == 0
         
     | 
| 378 | 
         
            +
                    nonzero_mask = (
         
     | 
| 379 | 
         
            +
                        (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous()
         
     | 
| 380 | 
         
            +
                    )
         
     | 
| 381 | 
         
            +
                    return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
         
     | 
| 382 | 
         
            +
             
     | 
| 383 | 
         
            +
                @torch.no_grad()
         
     | 
| 384 | 
         
            +
                def p_sample_loop(self, shape, return_intermediates=False):
         
     | 
| 385 | 
         
            +
                    device = self.betas.device
         
     | 
| 386 | 
         
            +
                    b = shape[0]
         
     | 
| 387 | 
         
            +
                    img = torch.randn(shape, device=device)
         
     | 
| 388 | 
         
            +
                    intermediates = [img]
         
     | 
| 389 | 
         
            +
                    for i in tqdm(
         
     | 
| 390 | 
         
            +
                        reversed(range(0, self.num_timesteps)),
         
     | 
| 391 | 
         
            +
                        desc="Sampling t",
         
     | 
| 392 | 
         
            +
                        total=self.num_timesteps,
         
     | 
| 393 | 
         
            +
                    ):
         
     | 
| 394 | 
         
            +
                        img = self.p_sample(
         
     | 
| 395 | 
         
            +
                            img,
         
     | 
| 396 | 
         
            +
                            torch.full((b,), i, device=device, dtype=torch.long),
         
     | 
| 397 | 
         
            +
                            clip_denoised=self.clip_denoised,
         
     | 
| 398 | 
         
            +
                        )
         
     | 
| 399 | 
         
            +
                        if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
         
     | 
| 400 | 
         
            +
                            intermediates.append(img)
         
     | 
| 401 | 
         
            +
                    if return_intermediates:
         
     | 
| 402 | 
         
            +
                        return img, intermediates
         
     | 
| 403 | 
         
            +
                    return img
         
     | 
| 404 | 
         
            +
             
     | 
| 405 | 
         
            +
                @torch.no_grad()
         
     | 
| 406 | 
         
            +
                def sample(self, batch_size=16, return_intermediates=False):
         
     | 
| 407 | 
         
            +
                    shape = (batch_size, channels, self.latent_t_size, self.latent_f_size)
         
     | 
| 408 | 
         
            +
                    channels = self.channels
         
     | 
| 409 | 
         
            +
                    return self.p_sample_loop(shape, return_intermediates=return_intermediates)
         
     | 
| 410 | 
         
            +
             
     | 
| 411 | 
         
            +
                def q_sample(self, x_start, t, noise=None):
         
     | 
| 412 | 
         
            +
                    noise = default(noise, lambda: torch.randn_like(x_start))
         
     | 
| 413 | 
         
            +
                    return (
         
     | 
| 414 | 
         
            +
                        extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
         
     | 
| 415 | 
         
            +
                        + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
         
     | 
| 416 | 
         
            +
                        * noise
         
     | 
| 417 | 
         
            +
                    )
         
     | 
| 418 | 
         
            +
             
     | 
| 419 | 
         
            +
                def forward(self, x, *args, **kwargs):
         
     | 
| 420 | 
         
            +
                    t = torch.randint(
         
     | 
| 421 | 
         
            +
                        0, self.num_timesteps, (x.shape[0],), device=self.device
         
     | 
| 422 | 
         
            +
                    ).long()
         
     | 
| 423 | 
         
            +
                    return self.p_losses(x, t, *args, **kwargs)
         
     | 
| 424 | 
         
            +
             
     | 
| 425 | 
         
            +
                def get_input(self, batch, k):
         
     | 
| 426 | 
         
            +
                    # fbank, log_magnitudes_stft, label_indices, fname, waveform, clip_label, text = batch
         
     | 
| 427 | 
         
            +
                    fbank, log_magnitudes_stft, label_indices, fname, waveform, text = batch
         
     | 
| 428 | 
         
            +
                    ret = {}
         
     | 
| 429 | 
         
            +
             
     | 
| 430 | 
         
            +
                    ret["fbank"] = (
         
     | 
| 431 | 
         
            +
                        fbank.unsqueeze(1).to(memory_format=torch.contiguous_format).float()
         
     | 
| 432 | 
         
            +
                    )
         
     | 
| 433 | 
         
            +
                    ret["stft"] = log_magnitudes_stft.to(
         
     | 
| 434 | 
         
            +
                        memory_format=torch.contiguous_format
         
     | 
| 435 | 
         
            +
                    ).float()
         
     | 
| 436 | 
         
            +
                    # ret["clip_label"] = clip_label.to(memory_format=torch.contiguous_format).float()
         
     | 
| 437 | 
         
            +
                    ret["waveform"] = waveform.to(memory_format=torch.contiguous_format).float()
         
     | 
| 438 | 
         
            +
                    ret["text"] = list(text)
         
     | 
| 439 | 
         
            +
                    ret["fname"] = fname
         
     | 
| 440 | 
         
            +
             
     | 
| 441 | 
         
            +
                    return ret[k]
         
     | 
    	
        audioldm/latent_diffusion/ema.py
    ADDED
    
    | 
         @@ -0,0 +1,82 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from torch import nn
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            class LitEma(nn.Module):
         
     | 
| 6 | 
         
            +
                def __init__(self, model, decay=0.9999, use_num_upates=True):
         
     | 
| 7 | 
         
            +
                    super().__init__()
         
     | 
| 8 | 
         
            +
                    if decay < 0.0 or decay > 1.0:
         
     | 
| 9 | 
         
            +
                        raise ValueError("Decay must be between 0 and 1")
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
                    self.m_name2s_name = {}
         
     | 
| 12 | 
         
            +
                    self.register_buffer("decay", torch.tensor(decay, dtype=torch.float32))
         
     | 
| 13 | 
         
            +
                    self.register_buffer(
         
     | 
| 14 | 
         
            +
                        "num_updates",
         
     | 
| 15 | 
         
            +
                        torch.tensor(0, dtype=torch.int)
         
     | 
| 16 | 
         
            +
                        if use_num_upates
         
     | 
| 17 | 
         
            +
                        else torch.tensor(-1, dtype=torch.int),
         
     | 
| 18 | 
         
            +
                    )
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
                    for name, p in model.named_parameters():
         
     | 
| 21 | 
         
            +
                        if p.requires_grad:
         
     | 
| 22 | 
         
            +
                            # remove as '.'-character is not allowed in buffers
         
     | 
| 23 | 
         
            +
                            s_name = name.replace(".", "")
         
     | 
| 24 | 
         
            +
                            self.m_name2s_name.update({name: s_name})
         
     | 
| 25 | 
         
            +
                            self.register_buffer(s_name, p.clone().detach().data)
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                    self.collected_params = []
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                def forward(self, model):
         
     | 
| 30 | 
         
            +
                    decay = self.decay
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
                    if self.num_updates >= 0:
         
     | 
| 33 | 
         
            +
                        self.num_updates += 1
         
     | 
| 34 | 
         
            +
                        decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                    one_minus_decay = 1.0 - decay
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                    with torch.no_grad():
         
     | 
| 39 | 
         
            +
                        m_param = dict(model.named_parameters())
         
     | 
| 40 | 
         
            +
                        shadow_params = dict(self.named_buffers())
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                        for key in m_param:
         
     | 
| 43 | 
         
            +
                            if m_param[key].requires_grad:
         
     | 
| 44 | 
         
            +
                                sname = self.m_name2s_name[key]
         
     | 
| 45 | 
         
            +
                                shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
         
     | 
| 46 | 
         
            +
                                shadow_params[sname].sub_(
         
     | 
| 47 | 
         
            +
                                    one_minus_decay * (shadow_params[sname] - m_param[key])
         
     | 
| 48 | 
         
            +
                                )
         
     | 
| 49 | 
         
            +
                            else:
         
     | 
| 50 | 
         
            +
                                assert not key in self.m_name2s_name
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                def copy_to(self, model):
         
     | 
| 53 | 
         
            +
                    m_param = dict(model.named_parameters())
         
     | 
| 54 | 
         
            +
                    shadow_params = dict(self.named_buffers())
         
     | 
| 55 | 
         
            +
                    for key in m_param:
         
     | 
| 56 | 
         
            +
                        if m_param[key].requires_grad:
         
     | 
| 57 | 
         
            +
                            m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
         
     | 
| 58 | 
         
            +
                        else:
         
     | 
| 59 | 
         
            +
                            assert not key in self.m_name2s_name
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                def store(self, parameters):
         
     | 
| 62 | 
         
            +
                    """
         
     | 
| 63 | 
         
            +
                    Save the current parameters for restoring later.
         
     | 
| 64 | 
         
            +
                    Args:
         
     | 
| 65 | 
         
            +
                      parameters: Iterable of `torch.nn.Parameter`; the parameters to be
         
     | 
| 66 | 
         
            +
                        temporarily stored.
         
     | 
| 67 | 
         
            +
                    """
         
     | 
| 68 | 
         
            +
                    self.collected_params = [param.clone() for param in parameters]
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                def restore(self, parameters):
         
     | 
| 71 | 
         
            +
                    """
         
     | 
| 72 | 
         
            +
                    Restore the parameters stored with the `store` method.
         
     | 
| 73 | 
         
            +
                    Useful to validate the model with EMA parameters without affecting the
         
     | 
| 74 | 
         
            +
                    original optimization process. Store the parameters before the
         
     | 
| 75 | 
         
            +
                    `copy_to` method. After validation (or model saving), use this to
         
     | 
| 76 | 
         
            +
                    restore the former parameters.
         
     | 
| 77 | 
         
            +
                    Args:
         
     | 
| 78 | 
         
            +
                      parameters: Iterable of `torch.nn.Parameter`; the parameters to be
         
     | 
| 79 | 
         
            +
                        updated with the stored parameters.
         
     | 
| 80 | 
         
            +
                    """
         
     | 
| 81 | 
         
            +
                    for c_param, param in zip(self.collected_params, parameters):
         
     | 
| 82 | 
         
            +
                        param.data.copy_(c_param.data)
         
     | 
    	
        audioldm/latent_diffusion/openaimodel.py
    ADDED
    
    | 
         @@ -0,0 +1,1069 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from abc import abstractmethod
         
     | 
| 2 | 
         
            +
            import math
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            import numpy as np
         
     | 
| 5 | 
         
            +
            import torch as th
         
     | 
| 6 | 
         
            +
            import torch.nn as nn
         
     | 
| 7 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            from audioldm.latent_diffusion.util import (
         
     | 
| 10 | 
         
            +
                checkpoint,
         
     | 
| 11 | 
         
            +
                conv_nd,
         
     | 
| 12 | 
         
            +
                linear,
         
     | 
| 13 | 
         
            +
                avg_pool_nd,
         
     | 
| 14 | 
         
            +
                zero_module,
         
     | 
| 15 | 
         
            +
                normalization,
         
     | 
| 16 | 
         
            +
                timestep_embedding,
         
     | 
| 17 | 
         
            +
            )
         
     | 
| 18 | 
         
            +
            from audioldm.latent_diffusion.attention import SpatialTransformer
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            # dummy replace
         
     | 
| 22 | 
         
            +
            def convert_module_to_f16(x):
         
     | 
| 23 | 
         
            +
                pass
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            def convert_module_to_f32(x):
         
     | 
| 27 | 
         
            +
                pass
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            ## go
         
     | 
| 31 | 
         
            +
            class AttentionPool2d(nn.Module):
         
     | 
| 32 | 
         
            +
                """
         
     | 
| 33 | 
         
            +
                Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
         
     | 
| 34 | 
         
            +
                """
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                def __init__(
         
     | 
| 37 | 
         
            +
                    self,
         
     | 
| 38 | 
         
            +
                    spacial_dim: int,
         
     | 
| 39 | 
         
            +
                    embed_dim: int,
         
     | 
| 40 | 
         
            +
                    num_heads_channels: int,
         
     | 
| 41 | 
         
            +
                    output_dim: int = None,
         
     | 
| 42 | 
         
            +
                ):
         
     | 
| 43 | 
         
            +
                    super().__init__()
         
     | 
| 44 | 
         
            +
                    self.positional_embedding = nn.Parameter(
         
     | 
| 45 | 
         
            +
                        th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5
         
     | 
| 46 | 
         
            +
                    )
         
     | 
| 47 | 
         
            +
                    self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
         
     | 
| 48 | 
         
            +
                    self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
         
     | 
| 49 | 
         
            +
                    self.num_heads = embed_dim // num_heads_channels
         
     | 
| 50 | 
         
            +
                    self.attention = QKVAttention(self.num_heads)
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                def forward(self, x):
         
     | 
| 53 | 
         
            +
                    b, c, *_spatial = x.shape
         
     | 
| 54 | 
         
            +
                    x = x.reshape(b, c, -1).contiguous()  # NC(HW)
         
     | 
| 55 | 
         
            +
                    x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1)  # NC(HW+1)
         
     | 
| 56 | 
         
            +
                    x = x + self.positional_embedding[None, :, :].to(x.dtype)  # NC(HW+1)
         
     | 
| 57 | 
         
            +
                    x = self.qkv_proj(x)
         
     | 
| 58 | 
         
            +
                    x = self.attention(x)
         
     | 
| 59 | 
         
            +
                    x = self.c_proj(x)
         
     | 
| 60 | 
         
            +
                    return x[:, :, 0]
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
            class TimestepBlock(nn.Module):
         
     | 
| 64 | 
         
            +
                """
         
     | 
| 65 | 
         
            +
                Any module where forward() takes timestep embeddings as a second argument.
         
     | 
| 66 | 
         
            +
                """
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                @abstractmethod
         
     | 
| 69 | 
         
            +
                def forward(self, x, emb):
         
     | 
| 70 | 
         
            +
                    """
         
     | 
| 71 | 
         
            +
                    Apply the module to `x` given `emb` timestep embeddings.
         
     | 
| 72 | 
         
            +
                    """
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
            class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
         
     | 
| 76 | 
         
            +
                """
         
     | 
| 77 | 
         
            +
                A sequential module that passes timestep embeddings to the children that
         
     | 
| 78 | 
         
            +
                support it as an extra input.
         
     | 
| 79 | 
         
            +
                """
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                def forward(self, x, emb, context=None):
         
     | 
| 82 | 
         
            +
                    for layer in self:
         
     | 
| 83 | 
         
            +
                        if isinstance(layer, TimestepBlock):
         
     | 
| 84 | 
         
            +
                            x = layer(x, emb)
         
     | 
| 85 | 
         
            +
                        elif isinstance(layer, SpatialTransformer):
         
     | 
| 86 | 
         
            +
                            x = layer(x, context)
         
     | 
| 87 | 
         
            +
                        else:
         
     | 
| 88 | 
         
            +
                            x = layer(x)
         
     | 
| 89 | 
         
            +
                    return x
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
            class Upsample(nn.Module):
         
     | 
| 93 | 
         
            +
                """
         
     | 
| 94 | 
         
            +
                An upsampling layer with an optional convolution.
         
     | 
| 95 | 
         
            +
                :param channels: channels in the inputs and outputs.
         
     | 
| 96 | 
         
            +
                :param use_conv: a bool determining if a convolution is applied.
         
     | 
| 97 | 
         
            +
                :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
         
     | 
| 98 | 
         
            +
                             upsampling occurs in the inner-two dimensions.
         
     | 
| 99 | 
         
            +
                """
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
         
     | 
| 102 | 
         
            +
                    super().__init__()
         
     | 
| 103 | 
         
            +
                    self.channels = channels
         
     | 
| 104 | 
         
            +
                    self.out_channels = out_channels or channels
         
     | 
| 105 | 
         
            +
                    self.use_conv = use_conv
         
     | 
| 106 | 
         
            +
                    self.dims = dims
         
     | 
| 107 | 
         
            +
                    if use_conv:
         
     | 
| 108 | 
         
            +
                        self.conv = conv_nd(
         
     | 
| 109 | 
         
            +
                            dims, self.channels, self.out_channels, 3, padding=padding
         
     | 
| 110 | 
         
            +
                        )
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                def forward(self, x):
         
     | 
| 113 | 
         
            +
                    assert x.shape[1] == self.channels
         
     | 
| 114 | 
         
            +
                    if self.dims == 3:
         
     | 
| 115 | 
         
            +
                        x = F.interpolate(
         
     | 
| 116 | 
         
            +
                            x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
         
     | 
| 117 | 
         
            +
                        )
         
     | 
| 118 | 
         
            +
                    else:
         
     | 
| 119 | 
         
            +
                        x = F.interpolate(x, scale_factor=2, mode="nearest")
         
     | 
| 120 | 
         
            +
                    if self.use_conv:
         
     | 
| 121 | 
         
            +
                        x = self.conv(x)
         
     | 
| 122 | 
         
            +
                    return x
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
            class TransposedUpsample(nn.Module):
         
     | 
| 126 | 
         
            +
                "Learned 2x upsampling without padding"
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                def __init__(self, channels, out_channels=None, ks=5):
         
     | 
| 129 | 
         
            +
                    super().__init__()
         
     | 
| 130 | 
         
            +
                    self.channels = channels
         
     | 
| 131 | 
         
            +
                    self.out_channels = out_channels or channels
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                    self.up = nn.ConvTranspose2d(
         
     | 
| 134 | 
         
            +
                        self.channels, self.out_channels, kernel_size=ks, stride=2
         
     | 
| 135 | 
         
            +
                    )
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                def forward(self, x):
         
     | 
| 138 | 
         
            +
                    return self.up(x)
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
            class Downsample(nn.Module):
         
     | 
| 142 | 
         
            +
                """
         
     | 
| 143 | 
         
            +
                A downsampling layer with an optional convolution.
         
     | 
| 144 | 
         
            +
                :param channels: channels in the inputs and outputs.
         
     | 
| 145 | 
         
            +
                :param use_conv: a bool determining if a convolution is applied.
         
     | 
| 146 | 
         
            +
                :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
         
     | 
| 147 | 
         
            +
                             downsampling occurs in the inner-two dimensions.
         
     | 
| 148 | 
         
            +
                """
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
         
     | 
| 151 | 
         
            +
                    super().__init__()
         
     | 
| 152 | 
         
            +
                    self.channels = channels
         
     | 
| 153 | 
         
            +
                    self.out_channels = out_channels or channels
         
     | 
| 154 | 
         
            +
                    self.use_conv = use_conv
         
     | 
| 155 | 
         
            +
                    self.dims = dims
         
     | 
| 156 | 
         
            +
                    stride = 2 if dims != 3 else (1, 2, 2)
         
     | 
| 157 | 
         
            +
                    if use_conv:
         
     | 
| 158 | 
         
            +
                        self.op = conv_nd(
         
     | 
| 159 | 
         
            +
                            dims,
         
     | 
| 160 | 
         
            +
                            self.channels,
         
     | 
| 161 | 
         
            +
                            self.out_channels,
         
     | 
| 162 | 
         
            +
                            3,
         
     | 
| 163 | 
         
            +
                            stride=stride,
         
     | 
| 164 | 
         
            +
                            padding=padding,
         
     | 
| 165 | 
         
            +
                        )
         
     | 
| 166 | 
         
            +
                    else:
         
     | 
| 167 | 
         
            +
                        assert self.channels == self.out_channels
         
     | 
| 168 | 
         
            +
                        self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                def forward(self, x):
         
     | 
| 171 | 
         
            +
                    assert x.shape[1] == self.channels
         
     | 
| 172 | 
         
            +
                    return self.op(x)
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
            class ResBlock(TimestepBlock):
         
     | 
| 176 | 
         
            +
                """
         
     | 
| 177 | 
         
            +
                A residual block that can optionally change the number of channels.
         
     | 
| 178 | 
         
            +
                :param channels: the number of input channels.
         
     | 
| 179 | 
         
            +
                :param emb_channels: the number of timestep embedding channels.
         
     | 
| 180 | 
         
            +
                :param dropout: the rate of dropout.
         
     | 
| 181 | 
         
            +
                :param out_channels: if specified, the number of out channels.
         
     | 
| 182 | 
         
            +
                :param use_conv: if True and out_channels is specified, use a spatial
         
     | 
| 183 | 
         
            +
                    convolution instead of a smaller 1x1 convolution to change the
         
     | 
| 184 | 
         
            +
                    channels in the skip connection.
         
     | 
| 185 | 
         
            +
                :param dims: determines if the signal is 1D, 2D, or 3D.
         
     | 
| 186 | 
         
            +
                :param use_checkpoint: if True, use gradient checkpointing on this module.
         
     | 
| 187 | 
         
            +
                :param up: if True, use this block for upsampling.
         
     | 
| 188 | 
         
            +
                :param down: if True, use this block for downsampling.
         
     | 
| 189 | 
         
            +
                """
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                def __init__(
         
     | 
| 192 | 
         
            +
                    self,
         
     | 
| 193 | 
         
            +
                    channels,
         
     | 
| 194 | 
         
            +
                    emb_channels,
         
     | 
| 195 | 
         
            +
                    dropout,
         
     | 
| 196 | 
         
            +
                    out_channels=None,
         
     | 
| 197 | 
         
            +
                    use_conv=False,
         
     | 
| 198 | 
         
            +
                    use_scale_shift_norm=False,
         
     | 
| 199 | 
         
            +
                    dims=2,
         
     | 
| 200 | 
         
            +
                    use_checkpoint=False,
         
     | 
| 201 | 
         
            +
                    up=False,
         
     | 
| 202 | 
         
            +
                    down=False,
         
     | 
| 203 | 
         
            +
                ):
         
     | 
| 204 | 
         
            +
                    super().__init__()
         
     | 
| 205 | 
         
            +
                    self.channels = channels
         
     | 
| 206 | 
         
            +
                    self.emb_channels = emb_channels
         
     | 
| 207 | 
         
            +
                    self.dropout = dropout
         
     | 
| 208 | 
         
            +
                    self.out_channels = out_channels or channels
         
     | 
| 209 | 
         
            +
                    self.use_conv = use_conv
         
     | 
| 210 | 
         
            +
                    self.use_checkpoint = use_checkpoint
         
     | 
| 211 | 
         
            +
                    self.use_scale_shift_norm = use_scale_shift_norm
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                    self.in_layers = nn.Sequential(
         
     | 
| 214 | 
         
            +
                        normalization(channels),
         
     | 
| 215 | 
         
            +
                        nn.SiLU(),
         
     | 
| 216 | 
         
            +
                        conv_nd(dims, channels, self.out_channels, 3, padding=1),
         
     | 
| 217 | 
         
            +
                    )
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
                    self.updown = up or down
         
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
                    if up:
         
     | 
| 222 | 
         
            +
                        self.h_upd = Upsample(channels, False, dims)
         
     | 
| 223 | 
         
            +
                        self.x_upd = Upsample(channels, False, dims)
         
     | 
| 224 | 
         
            +
                    elif down:
         
     | 
| 225 | 
         
            +
                        self.h_upd = Downsample(channels, False, dims)
         
     | 
| 226 | 
         
            +
                        self.x_upd = Downsample(channels, False, dims)
         
     | 
| 227 | 
         
            +
                    else:
         
     | 
| 228 | 
         
            +
                        self.h_upd = self.x_upd = nn.Identity()
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                    self.emb_layers = nn.Sequential(
         
     | 
| 231 | 
         
            +
                        nn.SiLU(),
         
     | 
| 232 | 
         
            +
                        linear(
         
     | 
| 233 | 
         
            +
                            emb_channels,
         
     | 
| 234 | 
         
            +
                            2 * self.out_channels if use_scale_shift_norm else self.out_channels,
         
     | 
| 235 | 
         
            +
                        ),
         
     | 
| 236 | 
         
            +
                    )
         
     | 
| 237 | 
         
            +
                    self.out_layers = nn.Sequential(
         
     | 
| 238 | 
         
            +
                        normalization(self.out_channels),
         
     | 
| 239 | 
         
            +
                        nn.SiLU(),
         
     | 
| 240 | 
         
            +
                        nn.Dropout(p=dropout),
         
     | 
| 241 | 
         
            +
                        zero_module(
         
     | 
| 242 | 
         
            +
                            conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
         
     | 
| 243 | 
         
            +
                        ),
         
     | 
| 244 | 
         
            +
                    )
         
     | 
| 245 | 
         
            +
             
     | 
| 246 | 
         
            +
                    if self.out_channels == channels:
         
     | 
| 247 | 
         
            +
                        self.skip_connection = nn.Identity()
         
     | 
| 248 | 
         
            +
                    elif use_conv:
         
     | 
| 249 | 
         
            +
                        self.skip_connection = conv_nd(
         
     | 
| 250 | 
         
            +
                            dims, channels, self.out_channels, 3, padding=1
         
     | 
| 251 | 
         
            +
                        )
         
     | 
| 252 | 
         
            +
                    else:
         
     | 
| 253 | 
         
            +
                        self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
         
     | 
| 254 | 
         
            +
             
     | 
| 255 | 
         
            +
                def forward(self, x, emb):
         
     | 
| 256 | 
         
            +
                    """
         
     | 
| 257 | 
         
            +
                    Apply the block to a Tensor, conditioned on a timestep embedding.
         
     | 
| 258 | 
         
            +
                    :param x: an [N x C x ...] Tensor of features.
         
     | 
| 259 | 
         
            +
                    :param emb: an [N x emb_channels] Tensor of timestep embeddings.
         
     | 
| 260 | 
         
            +
                    :return: an [N x C x ...] Tensor of outputs.
         
     | 
| 261 | 
         
            +
                    """
         
     | 
| 262 | 
         
            +
                    return checkpoint(
         
     | 
| 263 | 
         
            +
                        self._forward, (x, emb), self.parameters(), self.use_checkpoint
         
     | 
| 264 | 
         
            +
                    )
         
     | 
| 265 | 
         
            +
             
     | 
| 266 | 
         
            +
                def _forward(self, x, emb):
         
     | 
| 267 | 
         
            +
                    if self.updown:
         
     | 
| 268 | 
         
            +
                        in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
         
     | 
| 269 | 
         
            +
                        h = in_rest(x)
         
     | 
| 270 | 
         
            +
                        h = self.h_upd(h)
         
     | 
| 271 | 
         
            +
                        x = self.x_upd(x)
         
     | 
| 272 | 
         
            +
                        h = in_conv(h)
         
     | 
| 273 | 
         
            +
                    else:
         
     | 
| 274 | 
         
            +
                        h = self.in_layers(x)
         
     | 
| 275 | 
         
            +
                    emb_out = self.emb_layers(emb).type(h.dtype)
         
     | 
| 276 | 
         
            +
                    while len(emb_out.shape) < len(h.shape):
         
     | 
| 277 | 
         
            +
                        emb_out = emb_out[..., None]
         
     | 
| 278 | 
         
            +
                    if self.use_scale_shift_norm:
         
     | 
| 279 | 
         
            +
                        out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
         
     | 
| 280 | 
         
            +
                        scale, shift = th.chunk(emb_out, 2, dim=1)
         
     | 
| 281 | 
         
            +
                        h = out_norm(h) * (1 + scale) + shift
         
     | 
| 282 | 
         
            +
                        h = out_rest(h)
         
     | 
| 283 | 
         
            +
                    else:
         
     | 
| 284 | 
         
            +
                        h = h + emb_out
         
     | 
| 285 | 
         
            +
                        h = self.out_layers(h)
         
     | 
| 286 | 
         
            +
                    return self.skip_connection(x) + h
         
     | 
| 287 | 
         
            +
             
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
            class AttentionBlock(nn.Module):
         
     | 
| 290 | 
         
            +
                """
         
     | 
| 291 | 
         
            +
                An attention block that allows spatial positions to attend to each other.
         
     | 
| 292 | 
         
            +
                Originally ported from here, but adapted to the N-d case.
         
     | 
| 293 | 
         
            +
                https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
         
     | 
| 294 | 
         
            +
                """
         
     | 
| 295 | 
         
            +
             
     | 
| 296 | 
         
            +
                def __init__(
         
     | 
| 297 | 
         
            +
                    self,
         
     | 
| 298 | 
         
            +
                    channels,
         
     | 
| 299 | 
         
            +
                    num_heads=1,
         
     | 
| 300 | 
         
            +
                    num_head_channels=-1,
         
     | 
| 301 | 
         
            +
                    use_checkpoint=False,
         
     | 
| 302 | 
         
            +
                    use_new_attention_order=False,
         
     | 
| 303 | 
         
            +
                ):
         
     | 
| 304 | 
         
            +
                    super().__init__()
         
     | 
| 305 | 
         
            +
                    self.channels = channels
         
     | 
| 306 | 
         
            +
                    if num_head_channels == -1:
         
     | 
| 307 | 
         
            +
                        self.num_heads = num_heads
         
     | 
| 308 | 
         
            +
                    else:
         
     | 
| 309 | 
         
            +
                        assert (
         
     | 
| 310 | 
         
            +
                            channels % num_head_channels == 0
         
     | 
| 311 | 
         
            +
                        ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
         
     | 
| 312 | 
         
            +
                        self.num_heads = channels // num_head_channels
         
     | 
| 313 | 
         
            +
                    self.use_checkpoint = use_checkpoint
         
     | 
| 314 | 
         
            +
                    self.norm = normalization(channels)
         
     | 
| 315 | 
         
            +
                    self.qkv = conv_nd(1, channels, channels * 3, 1)
         
     | 
| 316 | 
         
            +
                    if use_new_attention_order:
         
     | 
| 317 | 
         
            +
                        # split qkv before split heads
         
     | 
| 318 | 
         
            +
                        self.attention = QKVAttention(self.num_heads)
         
     | 
| 319 | 
         
            +
                    else:
         
     | 
| 320 | 
         
            +
                        # split heads before split qkv
         
     | 
| 321 | 
         
            +
                        self.attention = QKVAttentionLegacy(self.num_heads)
         
     | 
| 322 | 
         
            +
             
     | 
| 323 | 
         
            +
                    self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                def forward(self, x):
         
     | 
| 326 | 
         
            +
                    return checkpoint(
         
     | 
| 327 | 
         
            +
                        self._forward, (x,), self.parameters(), True
         
     | 
| 328 | 
         
            +
                    )  # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
         
     | 
| 329 | 
         
            +
                    # return pt_checkpoint(self._forward, x)  # pytorch
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                def _forward(self, x):
         
     | 
| 332 | 
         
            +
                    b, c, *spatial = x.shape
         
     | 
| 333 | 
         
            +
                    x = x.reshape(b, c, -1).contiguous()
         
     | 
| 334 | 
         
            +
                    qkv = self.qkv(self.norm(x)).contiguous()
         
     | 
| 335 | 
         
            +
                    h = self.attention(qkv).contiguous()
         
     | 
| 336 | 
         
            +
                    h = self.proj_out(h).contiguous()
         
     | 
| 337 | 
         
            +
                    return (x + h).reshape(b, c, *spatial).contiguous()
         
     | 
| 338 | 
         
            +
             
     | 
| 339 | 
         
            +
             
     | 
| 340 | 
         
            +
            def count_flops_attn(model, _x, y):
         
     | 
| 341 | 
         
            +
                """
         
     | 
| 342 | 
         
            +
                A counter for the `thop` package to count the operations in an
         
     | 
| 343 | 
         
            +
                attention operation.
         
     | 
| 344 | 
         
            +
                Meant to be used like:
         
     | 
| 345 | 
         
            +
                    macs, params = thop.profile(
         
     | 
| 346 | 
         
            +
                        model,
         
     | 
| 347 | 
         
            +
                        inputs=(inputs, timestamps),
         
     | 
| 348 | 
         
            +
                        custom_ops={QKVAttention: QKVAttention.count_flops},
         
     | 
| 349 | 
         
            +
                    )
         
     | 
| 350 | 
         
            +
                """
         
     | 
| 351 | 
         
            +
                b, c, *spatial = y[0].shape
         
     | 
| 352 | 
         
            +
                num_spatial = int(np.prod(spatial))
         
     | 
| 353 | 
         
            +
                # We perform two matmuls with the same number of ops.
         
     | 
| 354 | 
         
            +
                # The first computes the weight matrix, the second computes
         
     | 
| 355 | 
         
            +
                # the combination of the value vectors.
         
     | 
| 356 | 
         
            +
                matmul_ops = 2 * b * (num_spatial**2) * c
         
     | 
| 357 | 
         
            +
                model.total_ops += th.DoubleTensor([matmul_ops])
         
     | 
| 358 | 
         
            +
             
     | 
| 359 | 
         
            +
             
     | 
| 360 | 
         
            +
            class QKVAttentionLegacy(nn.Module):
         
     | 
| 361 | 
         
            +
                """
         
     | 
| 362 | 
         
            +
                A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
         
     | 
| 363 | 
         
            +
                """
         
     | 
| 364 | 
         
            +
             
     | 
| 365 | 
         
            +
                def __init__(self, n_heads):
         
     | 
| 366 | 
         
            +
                    super().__init__()
         
     | 
| 367 | 
         
            +
                    self.n_heads = n_heads
         
     | 
| 368 | 
         
            +
             
     | 
| 369 | 
         
            +
                def forward(self, qkv):
         
     | 
| 370 | 
         
            +
                    """
         
     | 
| 371 | 
         
            +
                    Apply QKV attention.
         
     | 
| 372 | 
         
            +
                    :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
         
     | 
| 373 | 
         
            +
                    :return: an [N x (H * C) x T] tensor after attention.
         
     | 
| 374 | 
         
            +
                    """
         
     | 
| 375 | 
         
            +
                    bs, width, length = qkv.shape
         
     | 
| 376 | 
         
            +
                    assert width % (3 * self.n_heads) == 0
         
     | 
| 377 | 
         
            +
                    ch = width // (3 * self.n_heads)
         
     | 
| 378 | 
         
            +
                    q, k, v = (
         
     | 
| 379 | 
         
            +
                        qkv.reshape(bs * self.n_heads, ch * 3, length).contiguous().split(ch, dim=1)
         
     | 
| 380 | 
         
            +
                    )
         
     | 
| 381 | 
         
            +
                    scale = 1 / math.sqrt(math.sqrt(ch))
         
     | 
| 382 | 
         
            +
                    weight = th.einsum(
         
     | 
| 383 | 
         
            +
                        "bct,bcs->bts", q * scale, k * scale
         
     | 
| 384 | 
         
            +
                    )  # More stable with f16 than dividing afterwards
         
     | 
| 385 | 
         
            +
                    weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
         
     | 
| 386 | 
         
            +
                    a = th.einsum("bts,bcs->bct", weight, v)
         
     | 
| 387 | 
         
            +
                    return a.reshape(bs, -1, length).contiguous()
         
     | 
| 388 | 
         
            +
             
     | 
| 389 | 
         
            +
                @staticmethod
         
     | 
| 390 | 
         
            +
                def count_flops(model, _x, y):
         
     | 
| 391 | 
         
            +
                    return count_flops_attn(model, _x, y)
         
     | 
| 392 | 
         
            +
             
     | 
| 393 | 
         
            +
             
     | 
| 394 | 
         
            +
            class QKVAttention(nn.Module):
         
     | 
| 395 | 
         
            +
                """
         
     | 
| 396 | 
         
            +
                A module which performs QKV attention and splits in a different order.
         
     | 
| 397 | 
         
            +
                """
         
     | 
| 398 | 
         
            +
             
     | 
| 399 | 
         
            +
                def __init__(self, n_heads):
         
     | 
| 400 | 
         
            +
                    super().__init__()
         
     | 
| 401 | 
         
            +
                    self.n_heads = n_heads
         
     | 
| 402 | 
         
            +
             
     | 
| 403 | 
         
            +
                def forward(self, qkv):
         
     | 
| 404 | 
         
            +
                    """
         
     | 
| 405 | 
         
            +
                    Apply QKV attention.
         
     | 
| 406 | 
         
            +
                    :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
         
     | 
| 407 | 
         
            +
                    :return: an [N x (H * C) x T] tensor after attention.
         
     | 
| 408 | 
         
            +
                    """
         
     | 
| 409 | 
         
            +
                    bs, width, length = qkv.shape
         
     | 
| 410 | 
         
            +
                    assert width % (3 * self.n_heads) == 0
         
     | 
| 411 | 
         
            +
                    ch = width // (3 * self.n_heads)
         
     | 
| 412 | 
         
            +
                    q, k, v = qkv.chunk(3, dim=1)
         
     | 
| 413 | 
         
            +
                    scale = 1 / math.sqrt(math.sqrt(ch))
         
     | 
| 414 | 
         
            +
                    weight = th.einsum(
         
     | 
| 415 | 
         
            +
                        "bct,bcs->bts",
         
     | 
| 416 | 
         
            +
                        (q * scale).view(bs * self.n_heads, ch, length),
         
     | 
| 417 | 
         
            +
                        (k * scale).view(bs * self.n_heads, ch, length),
         
     | 
| 418 | 
         
            +
                    )  # More stable with f16 than dividing afterwards
         
     | 
| 419 | 
         
            +
                    weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
         
     | 
| 420 | 
         
            +
                    a = th.einsum(
         
     | 
| 421 | 
         
            +
                        "bts,bcs->bct",
         
     | 
| 422 | 
         
            +
                        weight,
         
     | 
| 423 | 
         
            +
                        v.reshape(bs * self.n_heads, ch, length).contiguous(),
         
     | 
| 424 | 
         
            +
                    )
         
     | 
| 425 | 
         
            +
                    return a.reshape(bs, -1, length).contiguous()
         
     | 
| 426 | 
         
            +
             
     | 
| 427 | 
         
            +
                @staticmethod
         
     | 
| 428 | 
         
            +
                def count_flops(model, _x, y):
         
     | 
| 429 | 
         
            +
                    return count_flops_attn(model, _x, y)
         
     | 
| 430 | 
         
            +
             
     | 
| 431 | 
         
            +
             
     | 
| 432 | 
         
            +
            class UNetModel(nn.Module):
         
     | 
| 433 | 
         
            +
                """
         
     | 
| 434 | 
         
            +
                The full UNet model with attention and timestep embedding.
         
     | 
| 435 | 
         
            +
                :param in_channels: channels in the input Tensor.
         
     | 
| 436 | 
         
            +
                :param model_channels: base channel count for the model.
         
     | 
| 437 | 
         
            +
                :param out_channels: channels in the output Tensor.
         
     | 
| 438 | 
         
            +
                :param num_res_blocks: number of residual blocks per downsample.
         
     | 
| 439 | 
         
            +
                :param attention_resolutions: a collection of downsample rates at which
         
     | 
| 440 | 
         
            +
                    attention will take place. May be a set, list, or tuple.
         
     | 
| 441 | 
         
            +
                    For example, if this contains 4, then at 4x downsampling, attention
         
     | 
| 442 | 
         
            +
                    will be used.
         
     | 
| 443 | 
         
            +
                :param dropout: the dropout probability.
         
     | 
| 444 | 
         
            +
                :param channel_mult: channel multiplier for each level of the UNet.
         
     | 
| 445 | 
         
            +
                :param conv_resample: if True, use learned convolutions for upsampling and
         
     | 
| 446 | 
         
            +
                    downsampling.
         
     | 
| 447 | 
         
            +
                :param dims: determines if the signal is 1D, 2D, or 3D.
         
     | 
| 448 | 
         
            +
                :param num_classes: if specified (as an int), then this model will be
         
     | 
| 449 | 
         
            +
                    class-conditional with `num_classes` classes.
         
     | 
| 450 | 
         
            +
                :param use_checkpoint: use gradient checkpointing to reduce memory usage.
         
     | 
| 451 | 
         
            +
                :param num_heads: the number of attention heads in each attention layer.
         
     | 
| 452 | 
         
            +
                :param num_heads_channels: if specified, ignore num_heads and instead use
         
     | 
| 453 | 
         
            +
                                           a fixed channel width per attention head.
         
     | 
| 454 | 
         
            +
                :param num_heads_upsample: works with num_heads to set a different number
         
     | 
| 455 | 
         
            +
                                           of heads for upsampling. Deprecated.
         
     | 
| 456 | 
         
            +
                :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
         
     | 
| 457 | 
         
            +
                :param resblock_updown: use residual blocks for up/downsampling.
         
     | 
| 458 | 
         
            +
                :param use_new_attention_order: use a different attention pattern for potentially
         
     | 
| 459 | 
         
            +
                                                increased efficiency.
         
     | 
| 460 | 
         
            +
                """
         
     | 
| 461 | 
         
            +
             
     | 
| 462 | 
         
            +
                def __init__(
         
     | 
| 463 | 
         
            +
                    self,
         
     | 
| 464 | 
         
            +
                    image_size,
         
     | 
| 465 | 
         
            +
                    in_channels,
         
     | 
| 466 | 
         
            +
                    model_channels,
         
     | 
| 467 | 
         
            +
                    out_channels,
         
     | 
| 468 | 
         
            +
                    num_res_blocks,
         
     | 
| 469 | 
         
            +
                    attention_resolutions,
         
     | 
| 470 | 
         
            +
                    dropout=0,
         
     | 
| 471 | 
         
            +
                    channel_mult=(1, 2, 4, 8),
         
     | 
| 472 | 
         
            +
                    conv_resample=True,
         
     | 
| 473 | 
         
            +
                    dims=2,
         
     | 
| 474 | 
         
            +
                    num_classes=None,
         
     | 
| 475 | 
         
            +
                    extra_film_condition_dim=None,
         
     | 
| 476 | 
         
            +
                    use_checkpoint=False,
         
     | 
| 477 | 
         
            +
                    use_fp16=False,
         
     | 
| 478 | 
         
            +
                    num_heads=-1,
         
     | 
| 479 | 
         
            +
                    num_head_channels=-1,
         
     | 
| 480 | 
         
            +
                    num_heads_upsample=-1,
         
     | 
| 481 | 
         
            +
                    use_scale_shift_norm=False,
         
     | 
| 482 | 
         
            +
                    extra_film_use_concat=False,  # If true, concatenate extrafilm condition with time embedding, else addition
         
     | 
| 483 | 
         
            +
                    resblock_updown=False,
         
     | 
| 484 | 
         
            +
                    use_new_attention_order=False,
         
     | 
| 485 | 
         
            +
                    use_spatial_transformer=False,  # custom transformer support
         
     | 
| 486 | 
         
            +
                    transformer_depth=1,  # custom transformer support
         
     | 
| 487 | 
         
            +
                    context_dim=None,  # custom transformer support
         
     | 
| 488 | 
         
            +
                    n_embed=None,  # custom support for prediction of discrete ids into codebook of first stage vq model
         
     | 
| 489 | 
         
            +
                    legacy=True,
         
     | 
| 490 | 
         
            +
                ):
         
     | 
| 491 | 
         
            +
                    super().__init__()
         
     | 
| 492 | 
         
            +
                    if num_heads_upsample == -1:
         
     | 
| 493 | 
         
            +
                        num_heads_upsample = num_heads
         
     | 
| 494 | 
         
            +
             
     | 
| 495 | 
         
            +
                    if num_heads == -1:
         
     | 
| 496 | 
         
            +
                        assert (
         
     | 
| 497 | 
         
            +
                            num_head_channels != -1
         
     | 
| 498 | 
         
            +
                        ), "Either num_heads or num_head_channels has to be set"
         
     | 
| 499 | 
         
            +
             
     | 
| 500 | 
         
            +
                    if num_head_channels == -1:
         
     | 
| 501 | 
         
            +
                        assert (
         
     | 
| 502 | 
         
            +
                            num_heads != -1
         
     | 
| 503 | 
         
            +
                        ), "Either num_heads or num_head_channels has to be set"
         
     | 
| 504 | 
         
            +
             
     | 
| 505 | 
         
            +
                    self.image_size = image_size
         
     | 
| 506 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 507 | 
         
            +
                    self.model_channels = model_channels
         
     | 
| 508 | 
         
            +
                    self.out_channels = out_channels
         
     | 
| 509 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 510 | 
         
            +
                    self.attention_resolutions = attention_resolutions
         
     | 
| 511 | 
         
            +
                    self.dropout = dropout
         
     | 
| 512 | 
         
            +
                    self.channel_mult = channel_mult
         
     | 
| 513 | 
         
            +
                    self.conv_resample = conv_resample
         
     | 
| 514 | 
         
            +
                    self.num_classes = num_classes
         
     | 
| 515 | 
         
            +
                    self.extra_film_condition_dim = extra_film_condition_dim
         
     | 
| 516 | 
         
            +
                    self.use_checkpoint = use_checkpoint
         
     | 
| 517 | 
         
            +
                    self.dtype = th.float16 if use_fp16 else th.float32
         
     | 
| 518 | 
         
            +
                    self.num_heads = num_heads
         
     | 
| 519 | 
         
            +
                    self.num_head_channels = num_head_channels
         
     | 
| 520 | 
         
            +
                    self.num_heads_upsample = num_heads_upsample
         
     | 
| 521 | 
         
            +
                    self.predict_codebook_ids = n_embed is not None
         
     | 
| 522 | 
         
            +
                    self.extra_film_use_concat = extra_film_use_concat
         
     | 
| 523 | 
         
            +
                    time_embed_dim = model_channels * 4
         
     | 
| 524 | 
         
            +
                    self.time_embed = nn.Sequential(
         
     | 
| 525 | 
         
            +
                        linear(model_channels, time_embed_dim),
         
     | 
| 526 | 
         
            +
                        nn.SiLU(),
         
     | 
| 527 | 
         
            +
                        linear(time_embed_dim, time_embed_dim),
         
     | 
| 528 | 
         
            +
                    )
         
     | 
| 529 | 
         
            +
             
     | 
| 530 | 
         
            +
                    assert not (
         
     | 
| 531 | 
         
            +
                        self.num_classes is not None and self.extra_film_condition_dim is not None
         
     | 
| 532 | 
         
            +
                    ), "As for the condition of theh UNet model, you can only set using class label or an extra embedding vector (such as from CLAP). You cannot set both num_classes and extra_film_condition_dim."
         
     | 
| 533 | 
         
            +
             
     | 
| 534 | 
         
            +
                    if self.num_classes is not None:
         
     | 
| 535 | 
         
            +
                        self.label_emb = nn.Embedding(num_classes, time_embed_dim)
         
     | 
| 536 | 
         
            +
             
     | 
| 537 | 
         
            +
                    self.use_extra_film_by_concat = (
         
     | 
| 538 | 
         
            +
                        self.extra_film_condition_dim is not None and self.extra_film_use_concat
         
     | 
| 539 | 
         
            +
                    )
         
     | 
| 540 | 
         
            +
                    self.use_extra_film_by_addition = (
         
     | 
| 541 | 
         
            +
                        self.extra_film_condition_dim is not None and not self.extra_film_use_concat
         
     | 
| 542 | 
         
            +
                    )
         
     | 
| 543 | 
         
            +
             
     | 
| 544 | 
         
            +
                    if self.extra_film_condition_dim is not None:
         
     | 
| 545 | 
         
            +
                        self.film_emb = nn.Linear(self.extra_film_condition_dim, time_embed_dim)
         
     | 
| 546 | 
         
            +
                        # print("+ Use extra condition on UNet channel using Film. Extra condition dimension is %s. " % self.extra_film_condition_dim)
         
     | 
| 547 | 
         
            +
                        # if(self.use_extra_film_by_concat):
         
     | 
| 548 | 
         
            +
                        #     print("\t By concatenation with time embedding")
         
     | 
| 549 | 
         
            +
                        # elif(self.use_extra_film_by_concat):
         
     | 
| 550 | 
         
            +
                        #     print("\t By addition with time embedding")
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
                    if use_spatial_transformer and (
         
     | 
| 553 | 
         
            +
                        self.use_extra_film_by_concat or self.use_extra_film_by_addition
         
     | 
| 554 | 
         
            +
                    ):
         
     | 
| 555 | 
         
            +
                        # print("+ Spatial transformer will only be used as self-attention. Because you have choose to use film as your global condition.")
         
     | 
| 556 | 
         
            +
                        spatial_transformer_no_context = True
         
     | 
| 557 | 
         
            +
                    else:
         
     | 
| 558 | 
         
            +
                        spatial_transformer_no_context = False
         
     | 
| 559 | 
         
            +
             
     | 
| 560 | 
         
            +
                    if use_spatial_transformer and not spatial_transformer_no_context:
         
     | 
| 561 | 
         
            +
                        assert (
         
     | 
| 562 | 
         
            +
                            context_dim is not None
         
     | 
| 563 | 
         
            +
                        ), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
         
     | 
| 564 | 
         
            +
             
     | 
| 565 | 
         
            +
                    if context_dim is not None and not spatial_transformer_no_context:
         
     | 
| 566 | 
         
            +
                        assert (
         
     | 
| 567 | 
         
            +
                            use_spatial_transformer
         
     | 
| 568 | 
         
            +
                        ), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
         
     | 
| 569 | 
         
            +
                        from omegaconf.listconfig import ListConfig
         
     | 
| 570 | 
         
            +
             
     | 
| 571 | 
         
            +
                        if type(context_dim) == ListConfig:
         
     | 
| 572 | 
         
            +
                            context_dim = list(context_dim)
         
     | 
| 573 | 
         
            +
             
     | 
| 574 | 
         
            +
                    self.input_blocks = nn.ModuleList(
         
     | 
| 575 | 
         
            +
                        [
         
     | 
| 576 | 
         
            +
                            TimestepEmbedSequential(
         
     | 
| 577 | 
         
            +
                                conv_nd(dims, in_channels, model_channels, 3, padding=1)
         
     | 
| 578 | 
         
            +
                            )
         
     | 
| 579 | 
         
            +
                        ]
         
     | 
| 580 | 
         
            +
                    )
         
     | 
| 581 | 
         
            +
                    self._feature_size = model_channels
         
     | 
| 582 | 
         
            +
                    input_block_chans = [model_channels]
         
     | 
| 583 | 
         
            +
                    ch = model_channels
         
     | 
| 584 | 
         
            +
                    ds = 1
         
     | 
| 585 | 
         
            +
                    for level, mult in enumerate(channel_mult):
         
     | 
| 586 | 
         
            +
                        for _ in range(num_res_blocks):
         
     | 
| 587 | 
         
            +
                            layers = [
         
     | 
| 588 | 
         
            +
                                ResBlock(
         
     | 
| 589 | 
         
            +
                                    ch,
         
     | 
| 590 | 
         
            +
                                    time_embed_dim
         
     | 
| 591 | 
         
            +
                                    if (not self.use_extra_film_by_concat)
         
     | 
| 592 | 
         
            +
                                    else time_embed_dim * 2,
         
     | 
| 593 | 
         
            +
                                    dropout,
         
     | 
| 594 | 
         
            +
                                    out_channels=mult * model_channels,
         
     | 
| 595 | 
         
            +
                                    dims=dims,
         
     | 
| 596 | 
         
            +
                                    use_checkpoint=use_checkpoint,
         
     | 
| 597 | 
         
            +
                                    use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 598 | 
         
            +
                                )
         
     | 
| 599 | 
         
            +
                            ]
         
     | 
| 600 | 
         
            +
                            ch = mult * model_channels
         
     | 
| 601 | 
         
            +
                            if ds in attention_resolutions:
         
     | 
| 602 | 
         
            +
                                if num_head_channels == -1:
         
     | 
| 603 | 
         
            +
                                    dim_head = ch // num_heads
         
     | 
| 604 | 
         
            +
                                else:
         
     | 
| 605 | 
         
            +
                                    num_heads = ch // num_head_channels
         
     | 
| 606 | 
         
            +
                                    dim_head = num_head_channels
         
     | 
| 607 | 
         
            +
                                if legacy:
         
     | 
| 608 | 
         
            +
                                    dim_head = (
         
     | 
| 609 | 
         
            +
                                        ch // num_heads
         
     | 
| 610 | 
         
            +
                                        if use_spatial_transformer
         
     | 
| 611 | 
         
            +
                                        else num_head_channels
         
     | 
| 612 | 
         
            +
                                    )
         
     | 
| 613 | 
         
            +
                                layers.append(
         
     | 
| 614 | 
         
            +
                                    AttentionBlock(
         
     | 
| 615 | 
         
            +
                                        ch,
         
     | 
| 616 | 
         
            +
                                        use_checkpoint=use_checkpoint,
         
     | 
| 617 | 
         
            +
                                        num_heads=num_heads,
         
     | 
| 618 | 
         
            +
                                        num_head_channels=dim_head,
         
     | 
| 619 | 
         
            +
                                        use_new_attention_order=use_new_attention_order,
         
     | 
| 620 | 
         
            +
                                    )
         
     | 
| 621 | 
         
            +
                                    if not use_spatial_transformer
         
     | 
| 622 | 
         
            +
                                    else SpatialTransformer(
         
     | 
| 623 | 
         
            +
                                        ch,
         
     | 
| 624 | 
         
            +
                                        num_heads,
         
     | 
| 625 | 
         
            +
                                        dim_head,
         
     | 
| 626 | 
         
            +
                                        depth=transformer_depth,
         
     | 
| 627 | 
         
            +
                                        context_dim=context_dim,
         
     | 
| 628 | 
         
            +
                                        no_context=spatial_transformer_no_context,
         
     | 
| 629 | 
         
            +
                                    )
         
     | 
| 630 | 
         
            +
                                )
         
     | 
| 631 | 
         
            +
                            self.input_blocks.append(TimestepEmbedSequential(*layers))
         
     | 
| 632 | 
         
            +
                            self._feature_size += ch
         
     | 
| 633 | 
         
            +
                            input_block_chans.append(ch)
         
     | 
| 634 | 
         
            +
                        if level != len(channel_mult) - 1:
         
     | 
| 635 | 
         
            +
                            out_ch = ch
         
     | 
| 636 | 
         
            +
                            self.input_blocks.append(
         
     | 
| 637 | 
         
            +
                                TimestepEmbedSequential(
         
     | 
| 638 | 
         
            +
                                    ResBlock(
         
     | 
| 639 | 
         
            +
                                        ch,
         
     | 
| 640 | 
         
            +
                                        time_embed_dim
         
     | 
| 641 | 
         
            +
                                        if (not self.use_extra_film_by_concat)
         
     | 
| 642 | 
         
            +
                                        else time_embed_dim * 2,
         
     | 
| 643 | 
         
            +
                                        dropout,
         
     | 
| 644 | 
         
            +
                                        out_channels=out_ch,
         
     | 
| 645 | 
         
            +
                                        dims=dims,
         
     | 
| 646 | 
         
            +
                                        use_checkpoint=use_checkpoint,
         
     | 
| 647 | 
         
            +
                                        use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 648 | 
         
            +
                                        down=True,
         
     | 
| 649 | 
         
            +
                                    )
         
     | 
| 650 | 
         
            +
                                    if resblock_updown
         
     | 
| 651 | 
         
            +
                                    else Downsample(
         
     | 
| 652 | 
         
            +
                                        ch, conv_resample, dims=dims, out_channels=out_ch
         
     | 
| 653 | 
         
            +
                                    )
         
     | 
| 654 | 
         
            +
                                )
         
     | 
| 655 | 
         
            +
                            )
         
     | 
| 656 | 
         
            +
                            ch = out_ch
         
     | 
| 657 | 
         
            +
                            input_block_chans.append(ch)
         
     | 
| 658 | 
         
            +
                            ds *= 2
         
     | 
| 659 | 
         
            +
                            self._feature_size += ch
         
     | 
| 660 | 
         
            +
             
     | 
| 661 | 
         
            +
                    if num_head_channels == -1:
         
     | 
| 662 | 
         
            +
                        dim_head = ch // num_heads
         
     | 
| 663 | 
         
            +
                    else:
         
     | 
| 664 | 
         
            +
                        num_heads = ch // num_head_channels
         
     | 
| 665 | 
         
            +
                        dim_head = num_head_channels
         
     | 
| 666 | 
         
            +
                    if legacy:
         
     | 
| 667 | 
         
            +
                        # num_heads = 1
         
     | 
| 668 | 
         
            +
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
         
     | 
| 669 | 
         
            +
                    self.middle_block = TimestepEmbedSequential(
         
     | 
| 670 | 
         
            +
                        ResBlock(
         
     | 
| 671 | 
         
            +
                            ch,
         
     | 
| 672 | 
         
            +
                            time_embed_dim
         
     | 
| 673 | 
         
            +
                            if (not self.use_extra_film_by_concat)
         
     | 
| 674 | 
         
            +
                            else time_embed_dim * 2,
         
     | 
| 675 | 
         
            +
                            dropout,
         
     | 
| 676 | 
         
            +
                            dims=dims,
         
     | 
| 677 | 
         
            +
                            use_checkpoint=use_checkpoint,
         
     | 
| 678 | 
         
            +
                            use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 679 | 
         
            +
                        ),
         
     | 
| 680 | 
         
            +
                        AttentionBlock(
         
     | 
| 681 | 
         
            +
                            ch,
         
     | 
| 682 | 
         
            +
                            use_checkpoint=use_checkpoint,
         
     | 
| 683 | 
         
            +
                            num_heads=num_heads,
         
     | 
| 684 | 
         
            +
                            num_head_channels=dim_head,
         
     | 
| 685 | 
         
            +
                            use_new_attention_order=use_new_attention_order,
         
     | 
| 686 | 
         
            +
                        )
         
     | 
| 687 | 
         
            +
                        if not use_spatial_transformer
         
     | 
| 688 | 
         
            +
                        else SpatialTransformer(
         
     | 
| 689 | 
         
            +
                            ch,
         
     | 
| 690 | 
         
            +
                            num_heads,
         
     | 
| 691 | 
         
            +
                            dim_head,
         
     | 
| 692 | 
         
            +
                            depth=transformer_depth,
         
     | 
| 693 | 
         
            +
                            context_dim=context_dim,
         
     | 
| 694 | 
         
            +
                            no_context=spatial_transformer_no_context,
         
     | 
| 695 | 
         
            +
                        ),
         
     | 
| 696 | 
         
            +
                        ResBlock(
         
     | 
| 697 | 
         
            +
                            ch,
         
     | 
| 698 | 
         
            +
                            time_embed_dim
         
     | 
| 699 | 
         
            +
                            if (not self.use_extra_film_by_concat)
         
     | 
| 700 | 
         
            +
                            else time_embed_dim * 2,
         
     | 
| 701 | 
         
            +
                            dropout,
         
     | 
| 702 | 
         
            +
                            dims=dims,
         
     | 
| 703 | 
         
            +
                            use_checkpoint=use_checkpoint,
         
     | 
| 704 | 
         
            +
                            use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 705 | 
         
            +
                        ),
         
     | 
| 706 | 
         
            +
                    )
         
     | 
| 707 | 
         
            +
                    self._feature_size += ch
         
     | 
| 708 | 
         
            +
             
     | 
| 709 | 
         
            +
                    self.output_blocks = nn.ModuleList([])
         
     | 
| 710 | 
         
            +
                    for level, mult in list(enumerate(channel_mult))[::-1]:
         
     | 
| 711 | 
         
            +
                        for i in range(num_res_blocks + 1):
         
     | 
| 712 | 
         
            +
                            ich = input_block_chans.pop()
         
     | 
| 713 | 
         
            +
                            layers = [
         
     | 
| 714 | 
         
            +
                                ResBlock(
         
     | 
| 715 | 
         
            +
                                    ch + ich,
         
     | 
| 716 | 
         
            +
                                    time_embed_dim
         
     | 
| 717 | 
         
            +
                                    if (not self.use_extra_film_by_concat)
         
     | 
| 718 | 
         
            +
                                    else time_embed_dim * 2,
         
     | 
| 719 | 
         
            +
                                    dropout,
         
     | 
| 720 | 
         
            +
                                    out_channels=model_channels * mult,
         
     | 
| 721 | 
         
            +
                                    dims=dims,
         
     | 
| 722 | 
         
            +
                                    use_checkpoint=use_checkpoint,
         
     | 
| 723 | 
         
            +
                                    use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 724 | 
         
            +
                                )
         
     | 
| 725 | 
         
            +
                            ]
         
     | 
| 726 | 
         
            +
                            ch = model_channels * mult
         
     | 
| 727 | 
         
            +
                            if ds in attention_resolutions:
         
     | 
| 728 | 
         
            +
                                if num_head_channels == -1:
         
     | 
| 729 | 
         
            +
                                    dim_head = ch // num_heads
         
     | 
| 730 | 
         
            +
                                else:
         
     | 
| 731 | 
         
            +
                                    num_heads = ch // num_head_channels
         
     | 
| 732 | 
         
            +
                                    dim_head = num_head_channels
         
     | 
| 733 | 
         
            +
                                if legacy:
         
     | 
| 734 | 
         
            +
                                    # num_heads = 1
         
     | 
| 735 | 
         
            +
                                    dim_head = (
         
     | 
| 736 | 
         
            +
                                        ch // num_heads
         
     | 
| 737 | 
         
            +
                                        if use_spatial_transformer
         
     | 
| 738 | 
         
            +
                                        else num_head_channels
         
     | 
| 739 | 
         
            +
                                    )
         
     | 
| 740 | 
         
            +
                                layers.append(
         
     | 
| 741 | 
         
            +
                                    AttentionBlock(
         
     | 
| 742 | 
         
            +
                                        ch,
         
     | 
| 743 | 
         
            +
                                        use_checkpoint=use_checkpoint,
         
     | 
| 744 | 
         
            +
                                        num_heads=num_heads_upsample,
         
     | 
| 745 | 
         
            +
                                        num_head_channels=dim_head,
         
     | 
| 746 | 
         
            +
                                        use_new_attention_order=use_new_attention_order,
         
     | 
| 747 | 
         
            +
                                    )
         
     | 
| 748 | 
         
            +
                                    if not use_spatial_transformer
         
     | 
| 749 | 
         
            +
                                    else SpatialTransformer(
         
     | 
| 750 | 
         
            +
                                        ch,
         
     | 
| 751 | 
         
            +
                                        num_heads,
         
     | 
| 752 | 
         
            +
                                        dim_head,
         
     | 
| 753 | 
         
            +
                                        depth=transformer_depth,
         
     | 
| 754 | 
         
            +
                                        context_dim=context_dim,
         
     | 
| 755 | 
         
            +
                                        no_context=spatial_transformer_no_context,
         
     | 
| 756 | 
         
            +
                                    )
         
     | 
| 757 | 
         
            +
                                )
         
     | 
| 758 | 
         
            +
                            if level and i == num_res_blocks:
         
     | 
| 759 | 
         
            +
                                out_ch = ch
         
     | 
| 760 | 
         
            +
                                layers.append(
         
     | 
| 761 | 
         
            +
                                    ResBlock(
         
     | 
| 762 | 
         
            +
                                        ch,
         
     | 
| 763 | 
         
            +
                                        time_embed_dim
         
     | 
| 764 | 
         
            +
                                        if (not self.use_extra_film_by_concat)
         
     | 
| 765 | 
         
            +
                                        else time_embed_dim * 2,
         
     | 
| 766 | 
         
            +
                                        dropout,
         
     | 
| 767 | 
         
            +
                                        out_channels=out_ch,
         
     | 
| 768 | 
         
            +
                                        dims=dims,
         
     | 
| 769 | 
         
            +
                                        use_checkpoint=use_checkpoint,
         
     | 
| 770 | 
         
            +
                                        use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 771 | 
         
            +
                                        up=True,
         
     | 
| 772 | 
         
            +
                                    )
         
     | 
| 773 | 
         
            +
                                    if resblock_updown
         
     | 
| 774 | 
         
            +
                                    else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
         
     | 
| 775 | 
         
            +
                                )
         
     | 
| 776 | 
         
            +
                                ds //= 2
         
     | 
| 777 | 
         
            +
                            self.output_blocks.append(TimestepEmbedSequential(*layers))
         
     | 
| 778 | 
         
            +
                            self._feature_size += ch
         
     | 
| 779 | 
         
            +
             
     | 
| 780 | 
         
            +
                    self.out = nn.Sequential(
         
     | 
| 781 | 
         
            +
                        normalization(ch),
         
     | 
| 782 | 
         
            +
                        nn.SiLU(),
         
     | 
| 783 | 
         
            +
                        zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
         
     | 
| 784 | 
         
            +
                    )
         
     | 
| 785 | 
         
            +
                    if self.predict_codebook_ids:
         
     | 
| 786 | 
         
            +
                        self.id_predictor = nn.Sequential(
         
     | 
| 787 | 
         
            +
                            normalization(ch),
         
     | 
| 788 | 
         
            +
                            conv_nd(dims, model_channels, n_embed, 1),
         
     | 
| 789 | 
         
            +
                            # nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
         
     | 
| 790 | 
         
            +
                        )
         
     | 
| 791 | 
         
            +
             
     | 
| 792 | 
         
            +
                    self.shape_reported = False
         
     | 
| 793 | 
         
            +
             
     | 
| 794 | 
         
            +
                def convert_to_fp16(self):
         
     | 
| 795 | 
         
            +
                    """
         
     | 
| 796 | 
         
            +
                    Convert the torso of the model to float16.
         
     | 
| 797 | 
         
            +
                    """
         
     | 
| 798 | 
         
            +
                    self.input_blocks.apply(convert_module_to_f16)
         
     | 
| 799 | 
         
            +
                    self.middle_block.apply(convert_module_to_f16)
         
     | 
| 800 | 
         
            +
                    self.output_blocks.apply(convert_module_to_f16)
         
     | 
| 801 | 
         
            +
             
     | 
| 802 | 
         
            +
                def convert_to_fp32(self):
         
     | 
| 803 | 
         
            +
                    """
         
     | 
| 804 | 
         
            +
                    Convert the torso of the model to float32.
         
     | 
| 805 | 
         
            +
                    """
         
     | 
| 806 | 
         
            +
                    self.input_blocks.apply(convert_module_to_f32)
         
     | 
| 807 | 
         
            +
                    self.middle_block.apply(convert_module_to_f32)
         
     | 
| 808 | 
         
            +
                    self.output_blocks.apply(convert_module_to_f32)
         
     | 
| 809 | 
         
            +
             
     | 
| 810 | 
         
            +
                def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
         
     | 
| 811 | 
         
            +
                    """
         
     | 
| 812 | 
         
            +
                    Apply the model to an input batch.
         
     | 
| 813 | 
         
            +
                    :param x: an [N x C x ...] Tensor of inputs.
         
     | 
| 814 | 
         
            +
                    :param timesteps: a 1-D batch of timesteps.
         
     | 
| 815 | 
         
            +
                    :param context: conditioning plugged in via crossattn
         
     | 
| 816 | 
         
            +
                    :param y: an [N] Tensor of labels, if class-conditional. an [N, extra_film_condition_dim] Tensor if film-embed conditional
         
     | 
| 817 | 
         
            +
                    :return: an [N x C x ...] Tensor of outputs.
         
     | 
| 818 | 
         
            +
                    """
         
     | 
| 819 | 
         
            +
                    if not self.shape_reported:
         
     | 
| 820 | 
         
            +
                        # print("The shape of UNet input is", x.size())
         
     | 
| 821 | 
         
            +
                        self.shape_reported = True
         
     | 
| 822 | 
         
            +
             
     | 
| 823 | 
         
            +
                    assert (y is not None) == (
         
     | 
| 824 | 
         
            +
                        self.num_classes is not None or self.extra_film_condition_dim is not None
         
     | 
| 825 | 
         
            +
                    ), "must specify y if and only if the model is class-conditional or film embedding conditional"
         
     | 
| 826 | 
         
            +
                    hs = []
         
     | 
| 827 | 
         
            +
                    t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
         
     | 
| 828 | 
         
            +
                    emb = self.time_embed(t_emb)
         
     | 
| 829 | 
         
            +
             
     | 
| 830 | 
         
            +
                    if self.num_classes is not None:
         
     | 
| 831 | 
         
            +
                        assert y.shape == (x.shape[0],)
         
     | 
| 832 | 
         
            +
                        emb = emb + self.label_emb(y)
         
     | 
| 833 | 
         
            +
             
     | 
| 834 | 
         
            +
                    if self.use_extra_film_by_addition:
         
     | 
| 835 | 
         
            +
                        emb = emb + self.film_emb(y)
         
     | 
| 836 | 
         
            +
                    elif self.use_extra_film_by_concat:
         
     | 
| 837 | 
         
            +
                        emb = th.cat([emb, self.film_emb(y)], dim=-1)
         
     | 
| 838 | 
         
            +
             
     | 
| 839 | 
         
            +
                    h = x.type(self.dtype)
         
     | 
| 840 | 
         
            +
                    for module in self.input_blocks:
         
     | 
| 841 | 
         
            +
                        h = module(h, emb, context)
         
     | 
| 842 | 
         
            +
                        hs.append(h)
         
     | 
| 843 | 
         
            +
                    h = self.middle_block(h, emb, context)
         
     | 
| 844 | 
         
            +
                    for module in self.output_blocks:
         
     | 
| 845 | 
         
            +
                        h = th.cat([h, hs.pop()], dim=1)
         
     | 
| 846 | 
         
            +
                        h = module(h, emb, context)
         
     | 
| 847 | 
         
            +
                    h = h.type(x.dtype)
         
     | 
| 848 | 
         
            +
                    if self.predict_codebook_ids:
         
     | 
| 849 | 
         
            +
                        return self.id_predictor(h)
         
     | 
| 850 | 
         
            +
                    else:
         
     | 
| 851 | 
         
            +
                        return self.out(h)
         
     | 
| 852 | 
         
            +
             
     | 
| 853 | 
         
            +
             
     | 
| 854 | 
         
            +
            class EncoderUNetModel(nn.Module):
         
     | 
| 855 | 
         
            +
                """
         
     | 
| 856 | 
         
            +
                The half UNet model with attention and timestep embedding.
         
     | 
| 857 | 
         
            +
                For usage, see UNet.
         
     | 
| 858 | 
         
            +
                """
         
     | 
| 859 | 
         
            +
             
     | 
| 860 | 
         
            +
                def __init__(
         
     | 
| 861 | 
         
            +
                    self,
         
     | 
| 862 | 
         
            +
                    image_size,
         
     | 
| 863 | 
         
            +
                    in_channels,
         
     | 
| 864 | 
         
            +
                    model_channels,
         
     | 
| 865 | 
         
            +
                    out_channels,
         
     | 
| 866 | 
         
            +
                    num_res_blocks,
         
     | 
| 867 | 
         
            +
                    attention_resolutions,
         
     | 
| 868 | 
         
            +
                    dropout=0,
         
     | 
| 869 | 
         
            +
                    channel_mult=(1, 2, 4, 8),
         
     | 
| 870 | 
         
            +
                    conv_resample=True,
         
     | 
| 871 | 
         
            +
                    dims=2,
         
     | 
| 872 | 
         
            +
                    use_checkpoint=False,
         
     | 
| 873 | 
         
            +
                    use_fp16=False,
         
     | 
| 874 | 
         
            +
                    num_heads=1,
         
     | 
| 875 | 
         
            +
                    num_head_channels=-1,
         
     | 
| 876 | 
         
            +
                    num_heads_upsample=-1,
         
     | 
| 877 | 
         
            +
                    use_scale_shift_norm=False,
         
     | 
| 878 | 
         
            +
                    resblock_updown=False,
         
     | 
| 879 | 
         
            +
                    use_new_attention_order=False,
         
     | 
| 880 | 
         
            +
                    pool="adaptive",
         
     | 
| 881 | 
         
            +
                    *args,
         
     | 
| 882 | 
         
            +
                    **kwargs,
         
     | 
| 883 | 
         
            +
                ):
         
     | 
| 884 | 
         
            +
                    super().__init__()
         
     | 
| 885 | 
         
            +
             
     | 
| 886 | 
         
            +
                    if num_heads_upsample == -1:
         
     | 
| 887 | 
         
            +
                        num_heads_upsample = num_heads
         
     | 
| 888 | 
         
            +
             
     | 
| 889 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 890 | 
         
            +
                    self.model_channels = model_channels
         
     | 
| 891 | 
         
            +
                    self.out_channels = out_channels
         
     | 
| 892 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 893 | 
         
            +
                    self.attention_resolutions = attention_resolutions
         
     | 
| 894 | 
         
            +
                    self.dropout = dropout
         
     | 
| 895 | 
         
            +
                    self.channel_mult = channel_mult
         
     | 
| 896 | 
         
            +
                    self.conv_resample = conv_resample
         
     | 
| 897 | 
         
            +
                    self.use_checkpoint = use_checkpoint
         
     | 
| 898 | 
         
            +
                    self.dtype = th.float16 if use_fp16 else th.float32
         
     | 
| 899 | 
         
            +
                    self.num_heads = num_heads
         
     | 
| 900 | 
         
            +
                    self.num_head_channels = num_head_channels
         
     | 
| 901 | 
         
            +
                    self.num_heads_upsample = num_heads_upsample
         
     | 
| 902 | 
         
            +
             
     | 
| 903 | 
         
            +
                    time_embed_dim = model_channels * 4
         
     | 
| 904 | 
         
            +
                    self.time_embed = nn.Sequential(
         
     | 
| 905 | 
         
            +
                        linear(model_channels, time_embed_dim),
         
     | 
| 906 | 
         
            +
                        nn.SiLU(),
         
     | 
| 907 | 
         
            +
                        linear(time_embed_dim, time_embed_dim),
         
     | 
| 908 | 
         
            +
                    )
         
     | 
| 909 | 
         
            +
             
     | 
| 910 | 
         
            +
                    self.input_blocks = nn.ModuleList(
         
     | 
| 911 | 
         
            +
                        [
         
     | 
| 912 | 
         
            +
                            TimestepEmbedSequential(
         
     | 
| 913 | 
         
            +
                                conv_nd(dims, in_channels, model_channels, 3, padding=1)
         
     | 
| 914 | 
         
            +
                            )
         
     | 
| 915 | 
         
            +
                        ]
         
     | 
| 916 | 
         
            +
                    )
         
     | 
| 917 | 
         
            +
                    self._feature_size = model_channels
         
     | 
| 918 | 
         
            +
                    input_block_chans = [model_channels]
         
     | 
| 919 | 
         
            +
                    ch = model_channels
         
     | 
| 920 | 
         
            +
                    ds = 1
         
     | 
| 921 | 
         
            +
                    for level, mult in enumerate(channel_mult):
         
     | 
| 922 | 
         
            +
                        for _ in range(num_res_blocks):
         
     | 
| 923 | 
         
            +
                            layers = [
         
     | 
| 924 | 
         
            +
                                ResBlock(
         
     | 
| 925 | 
         
            +
                                    ch,
         
     | 
| 926 | 
         
            +
                                    time_embed_dim,
         
     | 
| 927 | 
         
            +
                                    dropout,
         
     | 
| 928 | 
         
            +
                                    out_channels=mult * model_channels,
         
     | 
| 929 | 
         
            +
                                    dims=dims,
         
     | 
| 930 | 
         
            +
                                    use_checkpoint=use_checkpoint,
         
     | 
| 931 | 
         
            +
                                    use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 932 | 
         
            +
                                )
         
     | 
| 933 | 
         
            +
                            ]
         
     | 
| 934 | 
         
            +
                            ch = mult * model_channels
         
     | 
| 935 | 
         
            +
                            if ds in attention_resolutions:
         
     | 
| 936 | 
         
            +
                                layers.append(
         
     | 
| 937 | 
         
            +
                                    AttentionBlock(
         
     | 
| 938 | 
         
            +
                                        ch,
         
     | 
| 939 | 
         
            +
                                        use_checkpoint=use_checkpoint,
         
     | 
| 940 | 
         
            +
                                        num_heads=num_heads,
         
     | 
| 941 | 
         
            +
                                        num_head_channels=num_head_channels,
         
     | 
| 942 | 
         
            +
                                        use_new_attention_order=use_new_attention_order,
         
     | 
| 943 | 
         
            +
                                    )
         
     | 
| 944 | 
         
            +
                                )
         
     | 
| 945 | 
         
            +
                            self.input_blocks.append(TimestepEmbedSequential(*layers))
         
     | 
| 946 | 
         
            +
                            self._feature_size += ch
         
     | 
| 947 | 
         
            +
                            input_block_chans.append(ch)
         
     | 
| 948 | 
         
            +
                        if level != len(channel_mult) - 1:
         
     | 
| 949 | 
         
            +
                            out_ch = ch
         
     | 
| 950 | 
         
            +
                            self.input_blocks.append(
         
     | 
| 951 | 
         
            +
                                TimestepEmbedSequential(
         
     | 
| 952 | 
         
            +
                                    ResBlock(
         
     | 
| 953 | 
         
            +
                                        ch,
         
     | 
| 954 | 
         
            +
                                        time_embed_dim,
         
     | 
| 955 | 
         
            +
                                        dropout,
         
     | 
| 956 | 
         
            +
                                        out_channels=out_ch,
         
     | 
| 957 | 
         
            +
                                        dims=dims,
         
     | 
| 958 | 
         
            +
                                        use_checkpoint=use_checkpoint,
         
     | 
| 959 | 
         
            +
                                        use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 960 | 
         
            +
                                        down=True,
         
     | 
| 961 | 
         
            +
                                    )
         
     | 
| 962 | 
         
            +
                                    if resblock_updown
         
     | 
| 963 | 
         
            +
                                    else Downsample(
         
     | 
| 964 | 
         
            +
                                        ch, conv_resample, dims=dims, out_channels=out_ch
         
     | 
| 965 | 
         
            +
                                    )
         
     | 
| 966 | 
         
            +
                                )
         
     | 
| 967 | 
         
            +
                            )
         
     | 
| 968 | 
         
            +
                            ch = out_ch
         
     | 
| 969 | 
         
            +
                            input_block_chans.append(ch)
         
     | 
| 970 | 
         
            +
                            ds *= 2
         
     | 
| 971 | 
         
            +
                            self._feature_size += ch
         
     | 
| 972 | 
         
            +
             
     | 
| 973 | 
         
            +
                    self.middle_block = TimestepEmbedSequential(
         
     | 
| 974 | 
         
            +
                        ResBlock(
         
     | 
| 975 | 
         
            +
                            ch,
         
     | 
| 976 | 
         
            +
                            time_embed_dim,
         
     | 
| 977 | 
         
            +
                            dropout,
         
     | 
| 978 | 
         
            +
                            dims=dims,
         
     | 
| 979 | 
         
            +
                            use_checkpoint=use_checkpoint,
         
     | 
| 980 | 
         
            +
                            use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 981 | 
         
            +
                        ),
         
     | 
| 982 | 
         
            +
                        AttentionBlock(
         
     | 
| 983 | 
         
            +
                            ch,
         
     | 
| 984 | 
         
            +
                            use_checkpoint=use_checkpoint,
         
     | 
| 985 | 
         
            +
                            num_heads=num_heads,
         
     | 
| 986 | 
         
            +
                            num_head_channels=num_head_channels,
         
     | 
| 987 | 
         
            +
                            use_new_attention_order=use_new_attention_order,
         
     | 
| 988 | 
         
            +
                        ),
         
     | 
| 989 | 
         
            +
                        ResBlock(
         
     | 
| 990 | 
         
            +
                            ch,
         
     | 
| 991 | 
         
            +
                            time_embed_dim,
         
     | 
| 992 | 
         
            +
                            dropout,
         
     | 
| 993 | 
         
            +
                            dims=dims,
         
     | 
| 994 | 
         
            +
                            use_checkpoint=use_checkpoint,
         
     | 
| 995 | 
         
            +
                            use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 996 | 
         
            +
                        ),
         
     | 
| 997 | 
         
            +
                    )
         
     | 
| 998 | 
         
            +
                    self._feature_size += ch
         
     | 
| 999 | 
         
            +
                    self.pool = pool
         
     | 
| 1000 | 
         
            +
                    if pool == "adaptive":
         
     | 
| 1001 | 
         
            +
                        self.out = nn.Sequential(
         
     | 
| 1002 | 
         
            +
                            normalization(ch),
         
     | 
| 1003 | 
         
            +
                            nn.SiLU(),
         
     | 
| 1004 | 
         
            +
                            nn.AdaptiveAvgPool2d((1, 1)),
         
     | 
| 1005 | 
         
            +
                            zero_module(conv_nd(dims, ch, out_channels, 1)),
         
     | 
| 1006 | 
         
            +
                            nn.Flatten(),
         
     | 
| 1007 | 
         
            +
                        )
         
     | 
| 1008 | 
         
            +
                    elif pool == "attention":
         
     | 
| 1009 | 
         
            +
                        assert num_head_channels != -1
         
     | 
| 1010 | 
         
            +
                        self.out = nn.Sequential(
         
     | 
| 1011 | 
         
            +
                            normalization(ch),
         
     | 
| 1012 | 
         
            +
                            nn.SiLU(),
         
     | 
| 1013 | 
         
            +
                            AttentionPool2d(
         
     | 
| 1014 | 
         
            +
                                (image_size // ds), ch, num_head_channels, out_channels
         
     | 
| 1015 | 
         
            +
                            ),
         
     | 
| 1016 | 
         
            +
                        )
         
     | 
| 1017 | 
         
            +
                    elif pool == "spatial":
         
     | 
| 1018 | 
         
            +
                        self.out = nn.Sequential(
         
     | 
| 1019 | 
         
            +
                            nn.Linear(self._feature_size, 2048),
         
     | 
| 1020 | 
         
            +
                            nn.ReLU(),
         
     | 
| 1021 | 
         
            +
                            nn.Linear(2048, self.out_channels),
         
     | 
| 1022 | 
         
            +
                        )
         
     | 
| 1023 | 
         
            +
                    elif pool == "spatial_v2":
         
     | 
| 1024 | 
         
            +
                        self.out = nn.Sequential(
         
     | 
| 1025 | 
         
            +
                            nn.Linear(self._feature_size, 2048),
         
     | 
| 1026 | 
         
            +
                            normalization(2048),
         
     | 
| 1027 | 
         
            +
                            nn.SiLU(),
         
     | 
| 1028 | 
         
            +
                            nn.Linear(2048, self.out_channels),
         
     | 
| 1029 | 
         
            +
                        )
         
     | 
| 1030 | 
         
            +
                    else:
         
     | 
| 1031 | 
         
            +
                        raise NotImplementedError(f"Unexpected {pool} pooling")
         
     | 
| 1032 | 
         
            +
             
     | 
| 1033 | 
         
            +
                def convert_to_fp16(self):
         
     | 
| 1034 | 
         
            +
                    """
         
     | 
| 1035 | 
         
            +
                    Convert the torso of the model to float16.
         
     | 
| 1036 | 
         
            +
                    """
         
     | 
| 1037 | 
         
            +
                    self.input_blocks.apply(convert_module_to_f16)
         
     | 
| 1038 | 
         
            +
                    self.middle_block.apply(convert_module_to_f16)
         
     | 
| 1039 | 
         
            +
             
     | 
| 1040 | 
         
            +
                def convert_to_fp32(self):
         
     | 
| 1041 | 
         
            +
                    """
         
     | 
| 1042 | 
         
            +
                    Convert the torso of the model to float32.
         
     | 
| 1043 | 
         
            +
                    """
         
     | 
| 1044 | 
         
            +
                    self.input_blocks.apply(convert_module_to_f32)
         
     | 
| 1045 | 
         
            +
                    self.middle_block.apply(convert_module_to_f32)
         
     | 
| 1046 | 
         
            +
             
     | 
| 1047 | 
         
            +
                def forward(self, x, timesteps):
         
     | 
| 1048 | 
         
            +
                    """
         
     | 
| 1049 | 
         
            +
                    Apply the model to an input batch.
         
     | 
| 1050 | 
         
            +
                    :param x: an [N x C x ...] Tensor of inputs.
         
     | 
| 1051 | 
         
            +
                    :param timesteps: a 1-D batch of timesteps.
         
     | 
| 1052 | 
         
            +
                    :return: an [N x K] Tensor of outputs.
         
     | 
| 1053 | 
         
            +
                    """
         
     | 
| 1054 | 
         
            +
                    emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
         
     | 
| 1055 | 
         
            +
             
     | 
| 1056 | 
         
            +
                    results = []
         
     | 
| 1057 | 
         
            +
                    h = x.type(self.dtype)
         
     | 
| 1058 | 
         
            +
                    for module in self.input_blocks:
         
     | 
| 1059 | 
         
            +
                        h = module(h, emb)
         
     | 
| 1060 | 
         
            +
                        if self.pool.startswith("spatial"):
         
     | 
| 1061 | 
         
            +
                            results.append(h.type(x.dtype).mean(dim=(2, 3)))
         
     | 
| 1062 | 
         
            +
                    h = self.middle_block(h, emb)
         
     | 
| 1063 | 
         
            +
                    if self.pool.startswith("spatial"):
         
     | 
| 1064 | 
         
            +
                        results.append(h.type(x.dtype).mean(dim=(2, 3)))
         
     | 
| 1065 | 
         
            +
                        h = th.cat(results, axis=-1)
         
     | 
| 1066 | 
         
            +
                        return self.out(h)
         
     | 
| 1067 | 
         
            +
                    else:
         
     | 
| 1068 | 
         
            +
                        h = h.type(x.dtype)
         
     | 
| 1069 | 
         
            +
                        return self.out(h)
         
     | 
    	
        audioldm/latent_diffusion/util.py
    ADDED
    
    | 
         @@ -0,0 +1,295 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # adopted from
         
     | 
| 2 | 
         
            +
            # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
         
     | 
| 3 | 
         
            +
            # and
         
     | 
| 4 | 
         
            +
            # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
         
     | 
| 5 | 
         
            +
            # and
         
     | 
| 6 | 
         
            +
            # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
         
     | 
| 7 | 
         
            +
            #
         
     | 
| 8 | 
         
            +
            # thanks!
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            import os
         
     | 
| 12 | 
         
            +
            import math
         
     | 
| 13 | 
         
            +
            import torch
         
     | 
| 14 | 
         
            +
            import torch.nn as nn
         
     | 
| 15 | 
         
            +
            import numpy as np
         
     | 
| 16 | 
         
            +
            from einops import repeat
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            from audioldm.utils import instantiate_from_config
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            def make_beta_schedule(
         
     | 
| 22 | 
         
            +
                schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3
         
     | 
| 23 | 
         
            +
            ):
         
     | 
| 24 | 
         
            +
                if schedule == "linear":
         
     | 
| 25 | 
         
            +
                    betas = (
         
     | 
| 26 | 
         
            +
                        torch.linspace(
         
     | 
| 27 | 
         
            +
                            linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64
         
     | 
| 28 | 
         
            +
                        )
         
     | 
| 29 | 
         
            +
                        ** 2
         
     | 
| 30 | 
         
            +
                    )
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
                elif schedule == "cosine":
         
     | 
| 33 | 
         
            +
                    timesteps = (
         
     | 
| 34 | 
         
            +
                        torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
         
     | 
| 35 | 
         
            +
                    )
         
     | 
| 36 | 
         
            +
                    alphas = timesteps / (1 + cosine_s) * np.pi / 2
         
     | 
| 37 | 
         
            +
                    alphas = torch.cos(alphas).pow(2)
         
     | 
| 38 | 
         
            +
                    alphas = alphas / alphas[0]
         
     | 
| 39 | 
         
            +
                    betas = 1 - alphas[1:] / alphas[:-1]
         
     | 
| 40 | 
         
            +
                    betas = np.clip(betas, a_min=0, a_max=0.999)
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                elif schedule == "sqrt_linear":
         
     | 
| 43 | 
         
            +
                    betas = torch.linspace(
         
     | 
| 44 | 
         
            +
                        linear_start, linear_end, n_timestep, dtype=torch.float64
         
     | 
| 45 | 
         
            +
                    )
         
     | 
| 46 | 
         
            +
                elif schedule == "sqrt":
         
     | 
| 47 | 
         
            +
                    betas = (
         
     | 
| 48 | 
         
            +
                        torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
         
     | 
| 49 | 
         
            +
                        ** 0.5
         
     | 
| 50 | 
         
            +
                    )
         
     | 
| 51 | 
         
            +
                else:
         
     | 
| 52 | 
         
            +
                    raise ValueError(f"schedule '{schedule}' unknown.")
         
     | 
| 53 | 
         
            +
                return betas.numpy()
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
            def make_ddim_timesteps(
         
     | 
| 57 | 
         
            +
                ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True
         
     | 
| 58 | 
         
            +
            ):
         
     | 
| 59 | 
         
            +
                if ddim_discr_method == "uniform":
         
     | 
| 60 | 
         
            +
                    c = num_ddpm_timesteps // num_ddim_timesteps
         
     | 
| 61 | 
         
            +
                    ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
         
     | 
| 62 | 
         
            +
                elif ddim_discr_method == "quad":
         
     | 
| 63 | 
         
            +
                    ddim_timesteps = (
         
     | 
| 64 | 
         
            +
                        (np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2
         
     | 
| 65 | 
         
            +
                    ).astype(int)
         
     | 
| 66 | 
         
            +
                else:
         
     | 
| 67 | 
         
            +
                    raise NotImplementedError(
         
     | 
| 68 | 
         
            +
                        f'There is no ddim discretization method called "{ddim_discr_method}"'
         
     | 
| 69 | 
         
            +
                    )
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                # assert ddim_timesteps.shape[0] == num_ddim_timesteps
         
     | 
| 72 | 
         
            +
                # add one to get the final alpha values right (the ones from first scale to data during sampling)
         
     | 
| 73 | 
         
            +
                steps_out = ddim_timesteps + 1
         
     | 
| 74 | 
         
            +
                if verbose:
         
     | 
| 75 | 
         
            +
                    print(f"Selected timesteps for ddim sampler: {steps_out}")
         
     | 
| 76 | 
         
            +
                return steps_out
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
            def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
         
     | 
| 80 | 
         
            +
                # select alphas for computing the variance schedule
         
     | 
| 81 | 
         
            +
                alphas = alphacums[ddim_timesteps]
         
     | 
| 82 | 
         
            +
                alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                # according the the formula provided in https://arxiv.org/abs/2010.02502
         
     | 
| 85 | 
         
            +
                sigmas = eta * np.sqrt(
         
     | 
| 86 | 
         
            +
                    (1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)
         
     | 
| 87 | 
         
            +
                )
         
     | 
| 88 | 
         
            +
                if verbose:
         
     | 
| 89 | 
         
            +
                    print(
         
     | 
| 90 | 
         
            +
                        f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}"
         
     | 
| 91 | 
         
            +
                    )
         
     | 
| 92 | 
         
            +
                    print(
         
     | 
| 93 | 
         
            +
                        f"For the chosen value of eta, which is {eta}, "
         
     | 
| 94 | 
         
            +
                        f"this results in the following sigma_t schedule for ddim sampler {sigmas}"
         
     | 
| 95 | 
         
            +
                    )
         
     | 
| 96 | 
         
            +
                return sigmas, alphas, alphas_prev
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
            def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
         
     | 
| 100 | 
         
            +
                """
         
     | 
| 101 | 
         
            +
                Create a beta schedule that discretizes the given alpha_t_bar function,
         
     | 
| 102 | 
         
            +
                which defines the cumulative product of (1-beta) over time from t = [0,1].
         
     | 
| 103 | 
         
            +
                :param num_diffusion_timesteps: the number of betas to produce.
         
     | 
| 104 | 
         
            +
                :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
         
     | 
| 105 | 
         
            +
                                  produces the cumulative product of (1-beta) up to that
         
     | 
| 106 | 
         
            +
                                  part of the diffusion process.
         
     | 
| 107 | 
         
            +
                :param max_beta: the maximum beta to use; use values lower than 1 to
         
     | 
| 108 | 
         
            +
                                 prevent singularities.
         
     | 
| 109 | 
         
            +
                """
         
     | 
| 110 | 
         
            +
                betas = []
         
     | 
| 111 | 
         
            +
                for i in range(num_diffusion_timesteps):
         
     | 
| 112 | 
         
            +
                    t1 = i / num_diffusion_timesteps
         
     | 
| 113 | 
         
            +
                    t2 = (i + 1) / num_diffusion_timesteps
         
     | 
| 114 | 
         
            +
                    betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
         
     | 
| 115 | 
         
            +
                return np.array(betas)
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
            def extract_into_tensor(a, t, x_shape):
         
     | 
| 119 | 
         
            +
                b, *_ = t.shape
         
     | 
| 120 | 
         
            +
                out = a.gather(-1, t).contiguous()
         
     | 
| 121 | 
         
            +
                return out.reshape(b, *((1,) * (len(x_shape) - 1))).contiguous()
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
            def checkpoint(func, inputs, params, flag):
         
     | 
| 125 | 
         
            +
                """
         
     | 
| 126 | 
         
            +
                Evaluate a function without caching intermediate activations, allowing for
         
     | 
| 127 | 
         
            +
                reduced memory at the expense of extra compute in the backward pass.
         
     | 
| 128 | 
         
            +
                :param func: the function to evaluate.
         
     | 
| 129 | 
         
            +
                :param inputs: the argument sequence to pass to `func`.
         
     | 
| 130 | 
         
            +
                :param params: a sequence of parameters `func` depends on but does not
         
     | 
| 131 | 
         
            +
                               explicitly take as arguments.
         
     | 
| 132 | 
         
            +
                :param flag: if False, disable gradient checkpointing.
         
     | 
| 133 | 
         
            +
                """
         
     | 
| 134 | 
         
            +
                if flag:
         
     | 
| 135 | 
         
            +
                    args = tuple(inputs) + tuple(params)
         
     | 
| 136 | 
         
            +
                    return CheckpointFunction.apply(func, len(inputs), *args)
         
     | 
| 137 | 
         
            +
                else:
         
     | 
| 138 | 
         
            +
                    return func(*inputs)
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
            class CheckpointFunction(torch.autograd.Function):
         
     | 
| 142 | 
         
            +
                @staticmethod
         
     | 
| 143 | 
         
            +
                def forward(ctx, run_function, length, *args):
         
     | 
| 144 | 
         
            +
                    ctx.run_function = run_function
         
     | 
| 145 | 
         
            +
                    ctx.input_tensors = list(args[:length])
         
     | 
| 146 | 
         
            +
                    ctx.input_params = list(args[length:])
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                    with torch.no_grad():
         
     | 
| 149 | 
         
            +
                        output_tensors = ctx.run_function(*ctx.input_tensors)
         
     | 
| 150 | 
         
            +
                    return output_tensors
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                @staticmethod
         
     | 
| 153 | 
         
            +
                def backward(ctx, *output_grads):
         
     | 
| 154 | 
         
            +
                    ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
         
     | 
| 155 | 
         
            +
                    with torch.enable_grad():
         
     | 
| 156 | 
         
            +
                        # Fixes a bug where the first op in run_function modifies the
         
     | 
| 157 | 
         
            +
                        # Tensor storage in place, which is not allowed for detach()'d
         
     | 
| 158 | 
         
            +
                        # Tensors.
         
     | 
| 159 | 
         
            +
                        shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
         
     | 
| 160 | 
         
            +
                        output_tensors = ctx.run_function(*shallow_copies)
         
     | 
| 161 | 
         
            +
                    input_grads = torch.autograd.grad(
         
     | 
| 162 | 
         
            +
                        output_tensors,
         
     | 
| 163 | 
         
            +
                        ctx.input_tensors + ctx.input_params,
         
     | 
| 164 | 
         
            +
                        output_grads,
         
     | 
| 165 | 
         
            +
                        allow_unused=True,
         
     | 
| 166 | 
         
            +
                    )
         
     | 
| 167 | 
         
            +
                    del ctx.input_tensors
         
     | 
| 168 | 
         
            +
                    del ctx.input_params
         
     | 
| 169 | 
         
            +
                    del output_tensors
         
     | 
| 170 | 
         
            +
                    return (None, None) + input_grads
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
            def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
         
     | 
| 174 | 
         
            +
                """
         
     | 
| 175 | 
         
            +
                Create sinusoidal timestep embeddings.
         
     | 
| 176 | 
         
            +
                :param timesteps: a 1-D Tensor of N indices, one per batch element.
         
     | 
| 177 | 
         
            +
                                  These may be fractional.
         
     | 
| 178 | 
         
            +
                :param dim: the dimension of the output.
         
     | 
| 179 | 
         
            +
                :param max_period: controls the minimum frequency of the embeddings.
         
     | 
| 180 | 
         
            +
                :return: an [N x dim] Tensor of positional embeddings.
         
     | 
| 181 | 
         
            +
                """
         
     | 
| 182 | 
         
            +
                if not repeat_only:
         
     | 
| 183 | 
         
            +
                    half = dim // 2
         
     | 
| 184 | 
         
            +
                    freqs = torch.exp(
         
     | 
| 185 | 
         
            +
                        -math.log(max_period)
         
     | 
| 186 | 
         
            +
                        * torch.arange(start=0, end=half, dtype=torch.float32)
         
     | 
| 187 | 
         
            +
                        / half
         
     | 
| 188 | 
         
            +
                    ).to(device=timesteps.device)
         
     | 
| 189 | 
         
            +
                    args = timesteps[:, None].float() * freqs[None]
         
     | 
| 190 | 
         
            +
                    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
         
     | 
| 191 | 
         
            +
                    if dim % 2:
         
     | 
| 192 | 
         
            +
                        embedding = torch.cat(
         
     | 
| 193 | 
         
            +
                            [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
         
     | 
| 194 | 
         
            +
                        )
         
     | 
| 195 | 
         
            +
                else:
         
     | 
| 196 | 
         
            +
                    embedding = repeat(timesteps, "b -> b d", d=dim)
         
     | 
| 197 | 
         
            +
                return embedding
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
            def zero_module(module):
         
     | 
| 201 | 
         
            +
                """
         
     | 
| 202 | 
         
            +
                Zero out the parameters of a module and return it.
         
     | 
| 203 | 
         
            +
                """
         
     | 
| 204 | 
         
            +
                for p in module.parameters():
         
     | 
| 205 | 
         
            +
                    p.detach().zero_()
         
     | 
| 206 | 
         
            +
                return module
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
            def scale_module(module, scale):
         
     | 
| 210 | 
         
            +
                """
         
     | 
| 211 | 
         
            +
                Scale the parameters of a module and return it.
         
     | 
| 212 | 
         
            +
                """
         
     | 
| 213 | 
         
            +
                for p in module.parameters():
         
     | 
| 214 | 
         
            +
                    p.detach().mul_(scale)
         
     | 
| 215 | 
         
            +
                return module
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
            def mean_flat(tensor):
         
     | 
| 219 | 
         
            +
                """
         
     | 
| 220 | 
         
            +
                Take the mean over all non-batch dimensions.
         
     | 
| 221 | 
         
            +
                """
         
     | 
| 222 | 
         
            +
                return tensor.mean(dim=list(range(1, len(tensor.shape))))
         
     | 
| 223 | 
         
            +
             
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
            def normalization(channels):
         
     | 
| 226 | 
         
            +
                """
         
     | 
| 227 | 
         
            +
                Make a standard normalization layer.
         
     | 
| 228 | 
         
            +
                :param channels: number of input channels.
         
     | 
| 229 | 
         
            +
                :return: an nn.Module for normalization.
         
     | 
| 230 | 
         
            +
                """
         
     | 
| 231 | 
         
            +
                return GroupNorm32(32, channels)
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
             
     | 
| 234 | 
         
            +
            # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
         
     | 
| 235 | 
         
            +
            class SiLU(nn.Module):
         
     | 
| 236 | 
         
            +
                def forward(self, x):
         
     | 
| 237 | 
         
            +
                    return x * torch.sigmoid(x)
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
             
     | 
| 240 | 
         
            +
            class GroupNorm32(nn.GroupNorm):
         
     | 
| 241 | 
         
            +
                def forward(self, x):
         
     | 
| 242 | 
         
            +
                    return super().forward(x.float()).type(x.dtype)
         
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
            def conv_nd(dims, *args, **kwargs):
         
     | 
| 246 | 
         
            +
                """
         
     | 
| 247 | 
         
            +
                Create a 1D, 2D, or 3D convolution module.
         
     | 
| 248 | 
         
            +
                """
         
     | 
| 249 | 
         
            +
                if dims == 1:
         
     | 
| 250 | 
         
            +
                    return nn.Conv1d(*args, **kwargs)
         
     | 
| 251 | 
         
            +
                elif dims == 2:
         
     | 
| 252 | 
         
            +
                    return nn.Conv2d(*args, **kwargs)
         
     | 
| 253 | 
         
            +
                elif dims == 3:
         
     | 
| 254 | 
         
            +
                    return nn.Conv3d(*args, **kwargs)
         
     | 
| 255 | 
         
            +
                raise ValueError(f"unsupported dimensions: {dims}")
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
            def linear(*args, **kwargs):
         
     | 
| 259 | 
         
            +
                """
         
     | 
| 260 | 
         
            +
                Create a linear module.
         
     | 
| 261 | 
         
            +
                """
         
     | 
| 262 | 
         
            +
                return nn.Linear(*args, **kwargs)
         
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
            def avg_pool_nd(dims, *args, **kwargs):
         
     | 
| 266 | 
         
            +
                """
         
     | 
| 267 | 
         
            +
                Create a 1D, 2D, or 3D average pooling module.
         
     | 
| 268 | 
         
            +
                """
         
     | 
| 269 | 
         
            +
                if dims == 1:
         
     | 
| 270 | 
         
            +
                    return nn.AvgPool1d(*args, **kwargs)
         
     | 
| 271 | 
         
            +
                elif dims == 2:
         
     | 
| 272 | 
         
            +
                    return nn.AvgPool2d(*args, **kwargs)
         
     | 
| 273 | 
         
            +
                elif dims == 3:
         
     | 
| 274 | 
         
            +
                    return nn.AvgPool3d(*args, **kwargs)
         
     | 
| 275 | 
         
            +
                raise ValueError(f"unsupported dimensions: {dims}")
         
     | 
| 276 | 
         
            +
             
     | 
| 277 | 
         
            +
             
     | 
| 278 | 
         
            +
            class HybridConditioner(nn.Module):
         
     | 
| 279 | 
         
            +
                def __init__(self, c_concat_config, c_crossattn_config):
         
     | 
| 280 | 
         
            +
                    super().__init__()
         
     | 
| 281 | 
         
            +
                    self.concat_conditioner = instantiate_from_config(c_concat_config)
         
     | 
| 282 | 
         
            +
                    self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
                def forward(self, c_concat, c_crossattn):
         
     | 
| 285 | 
         
            +
                    c_concat = self.concat_conditioner(c_concat)
         
     | 
| 286 | 
         
            +
                    c_crossattn = self.crossattn_conditioner(c_crossattn)
         
     | 
| 287 | 
         
            +
                    return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]}
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
            def noise_like(shape, device, repeat=False):
         
     | 
| 291 | 
         
            +
                repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
         
     | 
| 292 | 
         
            +
                    shape[0], *((1,) * (len(shape) - 1))
         
     | 
| 293 | 
         
            +
                )
         
     | 
| 294 | 
         
            +
                noise = lambda: torch.randn(shape, device=device)
         
     | 
| 295 | 
         
            +
                return repeat_noise() if repeat else noise()
         
     | 
    	
        audioldm/ldm.py
    ADDED
    
    | 
         @@ -0,0 +1,818 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import numpy as np
         
     | 
| 5 | 
         
            +
            from tqdm import tqdm
         
     | 
| 6 | 
         
            +
            from audioldm.utils import default, instantiate_from_config, save_wave
         
     | 
| 7 | 
         
            +
            from audioldm.latent_diffusion.ddpm import DDPM
         
     | 
| 8 | 
         
            +
            from audioldm.variational_autoencoder.distributions import DiagonalGaussianDistribution
         
     | 
| 9 | 
         
            +
            from audioldm.latent_diffusion.util import noise_like
         
     | 
| 10 | 
         
            +
            from audioldm.latent_diffusion.ddim import DDIMSampler
         
     | 
| 11 | 
         
            +
            import os
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            def disabled_train(self, mode=True):
         
     | 
| 15 | 
         
            +
                """Overwrite model.train with this function to make sure train/eval mode
         
     | 
| 16 | 
         
            +
                does not change anymore."""
         
     | 
| 17 | 
         
            +
                return self
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            class LatentDiffusion(DDPM):
         
     | 
| 21 | 
         
            +
                """main class"""
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                def __init__(
         
     | 
| 24 | 
         
            +
                    self,
         
     | 
| 25 | 
         
            +
                    device="cuda",
         
     | 
| 26 | 
         
            +
                    first_stage_config=None,
         
     | 
| 27 | 
         
            +
                    cond_stage_config=None,
         
     | 
| 28 | 
         
            +
                    num_timesteps_cond=None,
         
     | 
| 29 | 
         
            +
                    cond_stage_key="image",
         
     | 
| 30 | 
         
            +
                    cond_stage_trainable=False,
         
     | 
| 31 | 
         
            +
                    concat_mode=True,
         
     | 
| 32 | 
         
            +
                    cond_stage_forward=None,
         
     | 
| 33 | 
         
            +
                    conditioning_key=None,
         
     | 
| 34 | 
         
            +
                    scale_factor=1.0,
         
     | 
| 35 | 
         
            +
                    scale_by_std=False,
         
     | 
| 36 | 
         
            +
                    base_learning_rate=None,
         
     | 
| 37 | 
         
            +
                    *args,
         
     | 
| 38 | 
         
            +
                    **kwargs,
         
     | 
| 39 | 
         
            +
                ):
         
     | 
| 40 | 
         
            +
                    self.device = device
         
     | 
| 41 | 
         
            +
                    self.learning_rate = base_learning_rate
         
     | 
| 42 | 
         
            +
                    self.num_timesteps_cond = default(num_timesteps_cond, 1)
         
     | 
| 43 | 
         
            +
                    self.scale_by_std = scale_by_std
         
     | 
| 44 | 
         
            +
                    assert self.num_timesteps_cond <= kwargs["timesteps"]
         
     | 
| 45 | 
         
            +
                    # for backwards compatibility after implementation of DiffusionWrapper
         
     | 
| 46 | 
         
            +
                    if conditioning_key is None:
         
     | 
| 47 | 
         
            +
                        conditioning_key = "concat" if concat_mode else "crossattn"
         
     | 
| 48 | 
         
            +
                    if cond_stage_config == "__is_unconditional__":
         
     | 
| 49 | 
         
            +
                        conditioning_key = None
         
     | 
| 50 | 
         
            +
                    ckpt_path = kwargs.pop("ckpt_path", None)
         
     | 
| 51 | 
         
            +
                    ignore_keys = kwargs.pop("ignore_keys", [])
         
     | 
| 52 | 
         
            +
                    super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
         
     | 
| 53 | 
         
            +
                    self.concat_mode = concat_mode
         
     | 
| 54 | 
         
            +
                    self.cond_stage_trainable = cond_stage_trainable
         
     | 
| 55 | 
         
            +
                    self.cond_stage_key = cond_stage_key
         
     | 
| 56 | 
         
            +
                    self.cond_stage_key_orig = cond_stage_key
         
     | 
| 57 | 
         
            +
                    try:
         
     | 
| 58 | 
         
            +
                        self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
         
     | 
| 59 | 
         
            +
                    except:
         
     | 
| 60 | 
         
            +
                        self.num_downs = 0
         
     | 
| 61 | 
         
            +
                    if not scale_by_std:
         
     | 
| 62 | 
         
            +
                        self.scale_factor = scale_factor
         
     | 
| 63 | 
         
            +
                    else:
         
     | 
| 64 | 
         
            +
                        self.register_buffer("scale_factor", torch.tensor(scale_factor))
         
     | 
| 65 | 
         
            +
                    self.instantiate_first_stage(first_stage_config)
         
     | 
| 66 | 
         
            +
                    self.instantiate_cond_stage(cond_stage_config)
         
     | 
| 67 | 
         
            +
                    self.cond_stage_forward = cond_stage_forward
         
     | 
| 68 | 
         
            +
                    self.clip_denoised = False
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                def make_cond_schedule(
         
     | 
| 71 | 
         
            +
                    self,
         
     | 
| 72 | 
         
            +
                ):
         
     | 
| 73 | 
         
            +
                    self.cond_ids = torch.full(
         
     | 
| 74 | 
         
            +
                        size=(self.num_timesteps,),
         
     | 
| 75 | 
         
            +
                        fill_value=self.num_timesteps - 1,
         
     | 
| 76 | 
         
            +
                        dtype=torch.long,
         
     | 
| 77 | 
         
            +
                    )
         
     | 
| 78 | 
         
            +
                    ids = torch.round(
         
     | 
| 79 | 
         
            +
                        torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
         
     | 
| 80 | 
         
            +
                    ).long()
         
     | 
| 81 | 
         
            +
                    self.cond_ids[: self.num_timesteps_cond] = ids
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                def register_schedule(
         
     | 
| 84 | 
         
            +
                    self,
         
     | 
| 85 | 
         
            +
                    given_betas=None,
         
     | 
| 86 | 
         
            +
                    beta_schedule="linear",
         
     | 
| 87 | 
         
            +
                    timesteps=1000,
         
     | 
| 88 | 
         
            +
                    linear_start=1e-4,
         
     | 
| 89 | 
         
            +
                    linear_end=2e-2,
         
     | 
| 90 | 
         
            +
                    cosine_s=8e-3,
         
     | 
| 91 | 
         
            +
                ):
         
     | 
| 92 | 
         
            +
                    super().register_schedule(
         
     | 
| 93 | 
         
            +
                        given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s
         
     | 
| 94 | 
         
            +
                    )
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                    self.shorten_cond_schedule = self.num_timesteps_cond > 1
         
     | 
| 97 | 
         
            +
                    if self.shorten_cond_schedule:
         
     | 
| 98 | 
         
            +
                        self.make_cond_schedule()
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                def instantiate_first_stage(self, config):
         
     | 
| 101 | 
         
            +
                    model = instantiate_from_config(config)
         
     | 
| 102 | 
         
            +
                    self.first_stage_model = model.eval()
         
     | 
| 103 | 
         
            +
                    self.first_stage_model.train = disabled_train
         
     | 
| 104 | 
         
            +
                    for param in self.first_stage_model.parameters():
         
     | 
| 105 | 
         
            +
                        param.requires_grad = False
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                def instantiate_cond_stage(self, config):
         
     | 
| 108 | 
         
            +
                    if not self.cond_stage_trainable:
         
     | 
| 109 | 
         
            +
                        if config == "__is_first_stage__":
         
     | 
| 110 | 
         
            +
                            print("Using first stage also as cond stage.")
         
     | 
| 111 | 
         
            +
                            self.cond_stage_model = self.first_stage_model
         
     | 
| 112 | 
         
            +
                        elif config == "__is_unconditional__":
         
     | 
| 113 | 
         
            +
                            print(f"Training {self.__class__.__name__} as an unconditional model.")
         
     | 
| 114 | 
         
            +
                            self.cond_stage_model = None
         
     | 
| 115 | 
         
            +
                            # self.be_unconditional = True
         
     | 
| 116 | 
         
            +
                        else:
         
     | 
| 117 | 
         
            +
                            model = instantiate_from_config(config)
         
     | 
| 118 | 
         
            +
                            self.cond_stage_model = model.eval()
         
     | 
| 119 | 
         
            +
                            self.cond_stage_model.train = disabled_train
         
     | 
| 120 | 
         
            +
                            for param in self.cond_stage_model.parameters():
         
     | 
| 121 | 
         
            +
                                param.requires_grad = False
         
     | 
| 122 | 
         
            +
                    else:
         
     | 
| 123 | 
         
            +
                        assert config != "__is_first_stage__"
         
     | 
| 124 | 
         
            +
                        assert config != "__is_unconditional__"
         
     | 
| 125 | 
         
            +
                        model = instantiate_from_config(config)
         
     | 
| 126 | 
         
            +
                        self.cond_stage_model = model
         
     | 
| 127 | 
         
            +
                    self.cond_stage_model = self.cond_stage_model.to(self.device)
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                def get_first_stage_encoding(self, encoder_posterior):
         
     | 
| 130 | 
         
            +
                    if isinstance(encoder_posterior, DiagonalGaussianDistribution):
         
     | 
| 131 | 
         
            +
                        z = encoder_posterior.sample()
         
     | 
| 132 | 
         
            +
                    elif isinstance(encoder_posterior, torch.Tensor):
         
     | 
| 133 | 
         
            +
                        z = encoder_posterior
         
     | 
| 134 | 
         
            +
                    else:
         
     | 
| 135 | 
         
            +
                        raise NotImplementedError(
         
     | 
| 136 | 
         
            +
                            f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
         
     | 
| 137 | 
         
            +
                        )
         
     | 
| 138 | 
         
            +
                    return self.scale_factor * z
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                def get_learned_conditioning(self, c):
         
     | 
| 141 | 
         
            +
                    if self.cond_stage_forward is None:
         
     | 
| 142 | 
         
            +
                        if hasattr(self.cond_stage_model, "encode") and callable(
         
     | 
| 143 | 
         
            +
                            self.cond_stage_model.encode
         
     | 
| 144 | 
         
            +
                        ):
         
     | 
| 145 | 
         
            +
                            c = self.cond_stage_model.encode(c)
         
     | 
| 146 | 
         
            +
                            if isinstance(c, DiagonalGaussianDistribution):
         
     | 
| 147 | 
         
            +
                                c = c.mode()
         
     | 
| 148 | 
         
            +
                        else:
         
     | 
| 149 | 
         
            +
                            # Text input is list
         
     | 
| 150 | 
         
            +
                            if type(c) == list and len(c) == 1:
         
     | 
| 151 | 
         
            +
                                c = self.cond_stage_model([c[0], c[0]])
         
     | 
| 152 | 
         
            +
                                c = c[0:1]
         
     | 
| 153 | 
         
            +
                            else:
         
     | 
| 154 | 
         
            +
                                c = self.cond_stage_model(c)
         
     | 
| 155 | 
         
            +
                    else:
         
     | 
| 156 | 
         
            +
                        assert hasattr(self.cond_stage_model, self.cond_stage_forward)
         
     | 
| 157 | 
         
            +
                        c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
         
     | 
| 158 | 
         
            +
                    return c
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                @torch.no_grad()
         
     | 
| 161 | 
         
            +
                def get_input(
         
     | 
| 162 | 
         
            +
                    self,
         
     | 
| 163 | 
         
            +
                    batch,
         
     | 
| 164 | 
         
            +
                    k,
         
     | 
| 165 | 
         
            +
                    return_first_stage_encode=True,
         
     | 
| 166 | 
         
            +
                    return_first_stage_outputs=False,
         
     | 
| 167 | 
         
            +
                    force_c_encode=False,
         
     | 
| 168 | 
         
            +
                    cond_key=None,
         
     | 
| 169 | 
         
            +
                    return_original_cond=False,
         
     | 
| 170 | 
         
            +
                    bs=None,
         
     | 
| 171 | 
         
            +
                ):
         
     | 
| 172 | 
         
            +
                    x = super().get_input(batch, k)
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                    if bs is not None:
         
     | 
| 175 | 
         
            +
                        x = x[:bs]
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                    x = x.to(self.device)
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                    if return_first_stage_encode:
         
     | 
| 180 | 
         
            +
                        encoder_posterior = self.encode_first_stage(x)
         
     | 
| 181 | 
         
            +
                        z = self.get_first_stage_encoding(encoder_posterior).detach()
         
     | 
| 182 | 
         
            +
                    else:
         
     | 
| 183 | 
         
            +
                        z = None
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
                    if self.model.conditioning_key is not None:
         
     | 
| 186 | 
         
            +
                        if cond_key is None:
         
     | 
| 187 | 
         
            +
                            cond_key = self.cond_stage_key
         
     | 
| 188 | 
         
            +
                        if cond_key != self.first_stage_key:
         
     | 
| 189 | 
         
            +
                            if cond_key in ["caption", "coordinates_bbox"]:
         
     | 
| 190 | 
         
            +
                                xc = batch[cond_key]
         
     | 
| 191 | 
         
            +
                            elif cond_key == "class_label":
         
     | 
| 192 | 
         
            +
                                xc = batch
         
     | 
| 193 | 
         
            +
                            else:
         
     | 
| 194 | 
         
            +
                                # [bs, 1, 527]
         
     | 
| 195 | 
         
            +
                                xc = super().get_input(batch, cond_key)
         
     | 
| 196 | 
         
            +
                                if type(xc) == torch.Tensor:
         
     | 
| 197 | 
         
            +
                                    xc = xc.to(self.device)
         
     | 
| 198 | 
         
            +
                        else:
         
     | 
| 199 | 
         
            +
                            xc = x
         
     | 
| 200 | 
         
            +
                        if not self.cond_stage_trainable or force_c_encode:
         
     | 
| 201 | 
         
            +
                            if isinstance(xc, dict) or isinstance(xc, list):
         
     | 
| 202 | 
         
            +
                                c = self.get_learned_conditioning(xc)
         
     | 
| 203 | 
         
            +
                            else:
         
     | 
| 204 | 
         
            +
                                c = self.get_learned_conditioning(xc.to(self.device))
         
     | 
| 205 | 
         
            +
                        else:
         
     | 
| 206 | 
         
            +
                            c = xc
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
                        if bs is not None:
         
     | 
| 209 | 
         
            +
                            c = c[:bs]
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
                    else:
         
     | 
| 212 | 
         
            +
                        c = None
         
     | 
| 213 | 
         
            +
                        xc = None
         
     | 
| 214 | 
         
            +
                        if self.use_positional_encodings:
         
     | 
| 215 | 
         
            +
                            pos_x, pos_y = self.compute_latent_shifts(batch)
         
     | 
| 216 | 
         
            +
                            c = {"pos_x": pos_x, "pos_y": pos_y}
         
     | 
| 217 | 
         
            +
                    out = [z, c]
         
     | 
| 218 | 
         
            +
                    if return_first_stage_outputs:
         
     | 
| 219 | 
         
            +
                        xrec = self.decode_first_stage(z)
         
     | 
| 220 | 
         
            +
                        out.extend([x, xrec])
         
     | 
| 221 | 
         
            +
                    if return_original_cond:
         
     | 
| 222 | 
         
            +
                        out.append(xc)
         
     | 
| 223 | 
         
            +
                    return out
         
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
                @torch.no_grad()
         
     | 
| 226 | 
         
            +
                def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
         
     | 
| 227 | 
         
            +
                    if predict_cids:
         
     | 
| 228 | 
         
            +
                        if z.dim() == 4:
         
     | 
| 229 | 
         
            +
                            z = torch.argmax(z.exp(), dim=1).long()
         
     | 
| 230 | 
         
            +
                        z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
         
     | 
| 231 | 
         
            +
                        z = rearrange(z, "b h w c -> b c h w").contiguous()
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                    z = 1.0 / self.scale_factor * z
         
     | 
| 234 | 
         
            +
                    return self.first_stage_model.decode(z)
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
                def mel_spectrogram_to_waveform(self, mel):
         
     | 
| 237 | 
         
            +
                    # Mel: [bs, 1, t-steps, fbins]
         
     | 
| 238 | 
         
            +
                    if len(mel.size()) == 4:
         
     | 
| 239 | 
         
            +
                        mel = mel.squeeze(1)
         
     | 
| 240 | 
         
            +
                    mel = mel.permute(0, 2, 1)
         
     | 
| 241 | 
         
            +
                    waveform = self.first_stage_model.vocoder(mel)
         
     | 
| 242 | 
         
            +
                    waveform = waveform.cpu().detach().numpy()
         
     | 
| 243 | 
         
            +
                    return waveform
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
                @torch.no_grad()
         
     | 
| 246 | 
         
            +
                def encode_first_stage(self, x):
         
     | 
| 247 | 
         
            +
                    return self.first_stage_model.encode(x)
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                def apply_model(self, x_noisy, t, cond, return_ids=False):
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                    if isinstance(cond, dict):
         
     | 
| 252 | 
         
            +
                        # hybrid case, cond is exptected to be a dict
         
     | 
| 253 | 
         
            +
                        pass
         
     | 
| 254 | 
         
            +
                    else:
         
     | 
| 255 | 
         
            +
                        if not isinstance(cond, list):
         
     | 
| 256 | 
         
            +
                            cond = [cond]
         
     | 
| 257 | 
         
            +
                        if self.model.conditioning_key == "concat":
         
     | 
| 258 | 
         
            +
                            key = "c_concat"
         
     | 
| 259 | 
         
            +
                        elif self.model.conditioning_key == "crossattn":
         
     | 
| 260 | 
         
            +
                            key = "c_crossattn"
         
     | 
| 261 | 
         
            +
                        else:
         
     | 
| 262 | 
         
            +
                            key = "c_film"
         
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
                        cond = {key: cond}
         
     | 
| 265 | 
         
            +
             
     | 
| 266 | 
         
            +
                    x_recon = self.model(x_noisy, t, **cond)
         
     | 
| 267 | 
         
            +
             
     | 
| 268 | 
         
            +
                    if isinstance(x_recon, tuple) and not return_ids:
         
     | 
| 269 | 
         
            +
                        return x_recon[0]
         
     | 
| 270 | 
         
            +
                    else:
         
     | 
| 271 | 
         
            +
                        return x_recon
         
     | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
            +
                def p_mean_variance(
         
     | 
| 274 | 
         
            +
                    self,
         
     | 
| 275 | 
         
            +
                    x,
         
     | 
| 276 | 
         
            +
                    c,
         
     | 
| 277 | 
         
            +
                    t,
         
     | 
| 278 | 
         
            +
                    clip_denoised: bool,
         
     | 
| 279 | 
         
            +
                    return_codebook_ids=False,
         
     | 
| 280 | 
         
            +
                    quantize_denoised=False,
         
     | 
| 281 | 
         
            +
                    return_x0=False,
         
     | 
| 282 | 
         
            +
                    score_corrector=None,
         
     | 
| 283 | 
         
            +
                    corrector_kwargs=None,
         
     | 
| 284 | 
         
            +
                ):
         
     | 
| 285 | 
         
            +
                    t_in = t
         
     | 
| 286 | 
         
            +
                    model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
         
     | 
| 287 | 
         
            +
             
     | 
| 288 | 
         
            +
                    if score_corrector is not None:
         
     | 
| 289 | 
         
            +
                        assert self.parameterization == "eps"
         
     | 
| 290 | 
         
            +
                        model_out = score_corrector.modify_score(
         
     | 
| 291 | 
         
            +
                            self, model_out, x, t, c, **corrector_kwargs
         
     | 
| 292 | 
         
            +
                        )
         
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
                    if return_codebook_ids:
         
     | 
| 295 | 
         
            +
                        model_out, logits = model_out
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
                    if self.parameterization == "eps":
         
     | 
| 298 | 
         
            +
                        x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
         
     | 
| 299 | 
         
            +
                    elif self.parameterization == "x0":
         
     | 
| 300 | 
         
            +
                        x_recon = model_out
         
     | 
| 301 | 
         
            +
                    else:
         
     | 
| 302 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                    if clip_denoised:
         
     | 
| 305 | 
         
            +
                        x_recon.clamp_(-1.0, 1.0)
         
     | 
| 306 | 
         
            +
                    if quantize_denoised:
         
     | 
| 307 | 
         
            +
                        x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
         
     | 
| 308 | 
         
            +
                    model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
         
     | 
| 309 | 
         
            +
                        x_start=x_recon, x_t=x, t=t
         
     | 
| 310 | 
         
            +
                    )
         
     | 
| 311 | 
         
            +
                    if return_codebook_ids:
         
     | 
| 312 | 
         
            +
                        return model_mean, posterior_variance, posterior_log_variance, logits
         
     | 
| 313 | 
         
            +
                    elif return_x0:
         
     | 
| 314 | 
         
            +
                        return model_mean, posterior_variance, posterior_log_variance, x_recon
         
     | 
| 315 | 
         
            +
                    else:
         
     | 
| 316 | 
         
            +
                        return model_mean, posterior_variance, posterior_log_variance
         
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
                @torch.no_grad()
         
     | 
| 319 | 
         
            +
                def p_sample(
         
     | 
| 320 | 
         
            +
                    self,
         
     | 
| 321 | 
         
            +
                    x,
         
     | 
| 322 | 
         
            +
                    c,
         
     | 
| 323 | 
         
            +
                    t,
         
     | 
| 324 | 
         
            +
                    clip_denoised=False,
         
     | 
| 325 | 
         
            +
                    repeat_noise=False,
         
     | 
| 326 | 
         
            +
                    return_codebook_ids=False,
         
     | 
| 327 | 
         
            +
                    quantize_denoised=False,
         
     | 
| 328 | 
         
            +
                    return_x0=False,
         
     | 
| 329 | 
         
            +
                    temperature=1.0,
         
     | 
| 330 | 
         
            +
                    noise_dropout=0.0,
         
     | 
| 331 | 
         
            +
                    score_corrector=None,
         
     | 
| 332 | 
         
            +
                    corrector_kwargs=None,
         
     | 
| 333 | 
         
            +
                ):
         
     | 
| 334 | 
         
            +
                    b, *_, device = *x.shape, x.device
         
     | 
| 335 | 
         
            +
                    outputs = self.p_mean_variance(
         
     | 
| 336 | 
         
            +
                        x=x,
         
     | 
| 337 | 
         
            +
                        c=c,
         
     | 
| 338 | 
         
            +
                        t=t,
         
     | 
| 339 | 
         
            +
                        clip_denoised=clip_denoised,
         
     | 
| 340 | 
         
            +
                        return_codebook_ids=return_codebook_ids,
         
     | 
| 341 | 
         
            +
                        quantize_denoised=quantize_denoised,
         
     | 
| 342 | 
         
            +
                        return_x0=return_x0,
         
     | 
| 343 | 
         
            +
                        score_corrector=score_corrector,
         
     | 
| 344 | 
         
            +
                        corrector_kwargs=corrector_kwargs,
         
     | 
| 345 | 
         
            +
                    )
         
     | 
| 346 | 
         
            +
                    if return_codebook_ids:
         
     | 
| 347 | 
         
            +
                        raise DeprecationWarning("Support dropped.")
         
     | 
| 348 | 
         
            +
                        model_mean, _, model_log_variance, logits = outputs
         
     | 
| 349 | 
         
            +
                    elif return_x0:
         
     | 
| 350 | 
         
            +
                        model_mean, _, model_log_variance, x0 = outputs
         
     | 
| 351 | 
         
            +
                    else:
         
     | 
| 352 | 
         
            +
                        model_mean, _, model_log_variance = outputs
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
                    noise = noise_like(x.shape, device, repeat_noise) * temperature
         
     | 
| 355 | 
         
            +
                    if noise_dropout > 0.0:
         
     | 
| 356 | 
         
            +
                        noise = torch.nn.functional.dropout(noise, p=noise_dropout)
         
     | 
| 357 | 
         
            +
                    # no noise when t == 0
         
     | 
| 358 | 
         
            +
                    nonzero_mask = (
         
     | 
| 359 | 
         
            +
                        (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous()
         
     | 
| 360 | 
         
            +
                    )
         
     | 
| 361 | 
         
            +
             
     | 
| 362 | 
         
            +
                    if return_codebook_ids:
         
     | 
| 363 | 
         
            +
                        return model_mean + nonzero_mask * (
         
     | 
| 364 | 
         
            +
                            0.5 * model_log_variance
         
     | 
| 365 | 
         
            +
                        ).exp() * noise, logits.argmax(dim=1)
         
     | 
| 366 | 
         
            +
                    if return_x0:
         
     | 
| 367 | 
         
            +
                        return (
         
     | 
| 368 | 
         
            +
                            model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise,
         
     | 
| 369 | 
         
            +
                            x0,
         
     | 
| 370 | 
         
            +
                        )
         
     | 
| 371 | 
         
            +
                    else:
         
     | 
| 372 | 
         
            +
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
         
     | 
| 373 | 
         
            +
             
     | 
| 374 | 
         
            +
                @torch.no_grad()
         
     | 
| 375 | 
         
            +
                def progressive_denoising(
         
     | 
| 376 | 
         
            +
                    self,
         
     | 
| 377 | 
         
            +
                    cond,
         
     | 
| 378 | 
         
            +
                    shape,
         
     | 
| 379 | 
         
            +
                    verbose=True,
         
     | 
| 380 | 
         
            +
                    callback=None,
         
     | 
| 381 | 
         
            +
                    quantize_denoised=False,
         
     | 
| 382 | 
         
            +
                    img_callback=None,
         
     | 
| 383 | 
         
            +
                    mask=None,
         
     | 
| 384 | 
         
            +
                    x0=None,
         
     | 
| 385 | 
         
            +
                    temperature=1.0,
         
     | 
| 386 | 
         
            +
                    noise_dropout=0.0,
         
     | 
| 387 | 
         
            +
                    score_corrector=None,
         
     | 
| 388 | 
         
            +
                    corrector_kwargs=None,
         
     | 
| 389 | 
         
            +
                    batch_size=None,
         
     | 
| 390 | 
         
            +
                    x_T=None,
         
     | 
| 391 | 
         
            +
                    start_T=None,
         
     | 
| 392 | 
         
            +
                    log_every_t=None,
         
     | 
| 393 | 
         
            +
                ):
         
     | 
| 394 | 
         
            +
                    if not log_every_t:
         
     | 
| 395 | 
         
            +
                        log_every_t = self.log_every_t
         
     | 
| 396 | 
         
            +
                    timesteps = self.num_timesteps
         
     | 
| 397 | 
         
            +
                    if batch_size is not None:
         
     | 
| 398 | 
         
            +
                        b = batch_size if batch_size is not None else shape[0]
         
     | 
| 399 | 
         
            +
                        shape = [batch_size] + list(shape)
         
     | 
| 400 | 
         
            +
                    else:
         
     | 
| 401 | 
         
            +
                        b = batch_size = shape[0]
         
     | 
| 402 | 
         
            +
                    if x_T is None:
         
     | 
| 403 | 
         
            +
                        img = torch.randn(shape, device=self.device)
         
     | 
| 404 | 
         
            +
                    else:
         
     | 
| 405 | 
         
            +
                        img = x_T
         
     | 
| 406 | 
         
            +
                    intermediates = []
         
     | 
| 407 | 
         
            +
                    if cond is not None:
         
     | 
| 408 | 
         
            +
                        if isinstance(cond, dict):
         
     | 
| 409 | 
         
            +
                            cond = {
         
     | 
| 410 | 
         
            +
                                key: cond[key][:batch_size]
         
     | 
| 411 | 
         
            +
                                if not isinstance(cond[key], list)
         
     | 
| 412 | 
         
            +
                                else list(map(lambda x: x[:batch_size], cond[key]))
         
     | 
| 413 | 
         
            +
                                for key in cond
         
     | 
| 414 | 
         
            +
                            }
         
     | 
| 415 | 
         
            +
                        else:
         
     | 
| 416 | 
         
            +
                            cond = (
         
     | 
| 417 | 
         
            +
                                [c[:batch_size] for c in cond]
         
     | 
| 418 | 
         
            +
                                if isinstance(cond, list)
         
     | 
| 419 | 
         
            +
                                else cond[:batch_size]
         
     | 
| 420 | 
         
            +
                            )
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
                    if start_T is not None:
         
     | 
| 423 | 
         
            +
                        timesteps = min(timesteps, start_T)
         
     | 
| 424 | 
         
            +
                    iterator = (
         
     | 
| 425 | 
         
            +
                        tqdm(
         
     | 
| 426 | 
         
            +
                            reversed(range(0, timesteps)),
         
     | 
| 427 | 
         
            +
                            desc="Progressive Generation",
         
     | 
| 428 | 
         
            +
                            total=timesteps,
         
     | 
| 429 | 
         
            +
                        )
         
     | 
| 430 | 
         
            +
                        if verbose
         
     | 
| 431 | 
         
            +
                        else reversed(range(0, timesteps))
         
     | 
| 432 | 
         
            +
                    )
         
     | 
| 433 | 
         
            +
                    if type(temperature) == float:
         
     | 
| 434 | 
         
            +
                        temperature = [temperature] * timesteps
         
     | 
| 435 | 
         
            +
             
     | 
| 436 | 
         
            +
                    for i in iterator:
         
     | 
| 437 | 
         
            +
                        ts = torch.full((b,), i, device=self.device, dtype=torch.long)
         
     | 
| 438 | 
         
            +
                        if self.shorten_cond_schedule:
         
     | 
| 439 | 
         
            +
                            assert self.model.conditioning_key != "hybrid"
         
     | 
| 440 | 
         
            +
                            tc = self.cond_ids[ts].to(cond.device)
         
     | 
| 441 | 
         
            +
                            cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
         
     | 
| 442 | 
         
            +
             
     | 
| 443 | 
         
            +
                        img, x0_partial = self.p_sample(
         
     | 
| 444 | 
         
            +
                            img,
         
     | 
| 445 | 
         
            +
                            cond,
         
     | 
| 446 | 
         
            +
                            ts,
         
     | 
| 447 | 
         
            +
                            clip_denoised=self.clip_denoised,
         
     | 
| 448 | 
         
            +
                            quantize_denoised=quantize_denoised,
         
     | 
| 449 | 
         
            +
                            return_x0=True,
         
     | 
| 450 | 
         
            +
                            temperature=temperature[i],
         
     | 
| 451 | 
         
            +
                            noise_dropout=noise_dropout,
         
     | 
| 452 | 
         
            +
                            score_corrector=score_corrector,
         
     | 
| 453 | 
         
            +
                            corrector_kwargs=corrector_kwargs,
         
     | 
| 454 | 
         
            +
                        )
         
     | 
| 455 | 
         
            +
                        if mask is not None:
         
     | 
| 456 | 
         
            +
                            assert x0 is not None
         
     | 
| 457 | 
         
            +
                            img_orig = self.q_sample(x0, ts)
         
     | 
| 458 | 
         
            +
                            img = img_orig * mask + (1.0 - mask) * img
         
     | 
| 459 | 
         
            +
             
     | 
| 460 | 
         
            +
                        if i % log_every_t == 0 or i == timesteps - 1:
         
     | 
| 461 | 
         
            +
                            intermediates.append(x0_partial)
         
     | 
| 462 | 
         
            +
                        if callback:
         
     | 
| 463 | 
         
            +
                            callback(i)
         
     | 
| 464 | 
         
            +
                        if img_callback:
         
     | 
| 465 | 
         
            +
                            img_callback(img, i)
         
     | 
| 466 | 
         
            +
                    return img, intermediates
         
     | 
| 467 | 
         
            +
             
     | 
| 468 | 
         
            +
                @torch.no_grad()
         
     | 
| 469 | 
         
            +
                def p_sample_loop(
         
     | 
| 470 | 
         
            +
                    self,
         
     | 
| 471 | 
         
            +
                    cond,
         
     | 
| 472 | 
         
            +
                    shape,
         
     | 
| 473 | 
         
            +
                    return_intermediates=False,
         
     | 
| 474 | 
         
            +
                    x_T=None,
         
     | 
| 475 | 
         
            +
                    verbose=True,
         
     | 
| 476 | 
         
            +
                    callback=None,
         
     | 
| 477 | 
         
            +
                    timesteps=None,
         
     | 
| 478 | 
         
            +
                    quantize_denoised=False,
         
     | 
| 479 | 
         
            +
                    mask=None,
         
     | 
| 480 | 
         
            +
                    x0=None,
         
     | 
| 481 | 
         
            +
                    img_callback=None,
         
     | 
| 482 | 
         
            +
                    start_T=None,
         
     | 
| 483 | 
         
            +
                    log_every_t=None,
         
     | 
| 484 | 
         
            +
                ):
         
     | 
| 485 | 
         
            +
             
     | 
| 486 | 
         
            +
                    if not log_every_t:
         
     | 
| 487 | 
         
            +
                        log_every_t = self.log_every_t
         
     | 
| 488 | 
         
            +
                    device = self.betas.device
         
     | 
| 489 | 
         
            +
                    b = shape[0]
         
     | 
| 490 | 
         
            +
                    if x_T is None:
         
     | 
| 491 | 
         
            +
                        img = torch.randn(shape, device=device)
         
     | 
| 492 | 
         
            +
                    else:
         
     | 
| 493 | 
         
            +
                        img = x_T
         
     | 
| 494 | 
         
            +
             
     | 
| 495 | 
         
            +
                    intermediates = [img]
         
     | 
| 496 | 
         
            +
                    if timesteps is None:
         
     | 
| 497 | 
         
            +
                        timesteps = self.num_timesteps
         
     | 
| 498 | 
         
            +
             
     | 
| 499 | 
         
            +
                    if start_T is not None:
         
     | 
| 500 | 
         
            +
                        timesteps = min(timesteps, start_T)
         
     | 
| 501 | 
         
            +
                    iterator = (
         
     | 
| 502 | 
         
            +
                        tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps)
         
     | 
| 503 | 
         
            +
                        if verbose
         
     | 
| 504 | 
         
            +
                        else reversed(range(0, timesteps))
         
     | 
| 505 | 
         
            +
                    )
         
     | 
| 506 | 
         
            +
             
     | 
| 507 | 
         
            +
                    if mask is not None:
         
     | 
| 508 | 
         
            +
                        assert x0 is not None
         
     | 
| 509 | 
         
            +
                        assert x0.shape[2:3] == mask.shape[2:3]  # spatial size has to match
         
     | 
| 510 | 
         
            +
             
     | 
| 511 | 
         
            +
                    for i in iterator:
         
     | 
| 512 | 
         
            +
                        ts = torch.full((b,), i, device=device, dtype=torch.long)
         
     | 
| 513 | 
         
            +
                        if self.shorten_cond_schedule:
         
     | 
| 514 | 
         
            +
                            assert self.model.conditioning_key != "hybrid"
         
     | 
| 515 | 
         
            +
                            tc = self.cond_ids[ts].to(cond.device)
         
     | 
| 516 | 
         
            +
                            cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
         
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
                        img = self.p_sample(
         
     | 
| 519 | 
         
            +
                            img,
         
     | 
| 520 | 
         
            +
                            cond,
         
     | 
| 521 | 
         
            +
                            ts,
         
     | 
| 522 | 
         
            +
                            clip_denoised=self.clip_denoised,
         
     | 
| 523 | 
         
            +
                            quantize_denoised=quantize_denoised,
         
     | 
| 524 | 
         
            +
                        )
         
     | 
| 525 | 
         
            +
                        if mask is not None:
         
     | 
| 526 | 
         
            +
                            img_orig = self.q_sample(x0, ts)
         
     | 
| 527 | 
         
            +
                            img = img_orig * mask + (1.0 - mask) * img
         
     | 
| 528 | 
         
            +
             
     | 
| 529 | 
         
            +
                        if i % log_every_t == 0 or i == timesteps - 1:
         
     | 
| 530 | 
         
            +
                            intermediates.append(img)
         
     | 
| 531 | 
         
            +
                        if callback:
         
     | 
| 532 | 
         
            +
                            callback(i)
         
     | 
| 533 | 
         
            +
                        if img_callback:
         
     | 
| 534 | 
         
            +
                            img_callback(img, i)
         
     | 
| 535 | 
         
            +
             
     | 
| 536 | 
         
            +
                    if return_intermediates:
         
     | 
| 537 | 
         
            +
                        return img, intermediates
         
     | 
| 538 | 
         
            +
                    return img
         
     | 
| 539 | 
         
            +
             
     | 
| 540 | 
         
            +
                @torch.no_grad()
         
     | 
| 541 | 
         
            +
                def sample(
         
     | 
| 542 | 
         
            +
                    self,
         
     | 
| 543 | 
         
            +
                    cond,
         
     | 
| 544 | 
         
            +
                    batch_size=16,
         
     | 
| 545 | 
         
            +
                    return_intermediates=False,
         
     | 
| 546 | 
         
            +
                    x_T=None,
         
     | 
| 547 | 
         
            +
                    verbose=True,
         
     | 
| 548 | 
         
            +
                    timesteps=None,
         
     | 
| 549 | 
         
            +
                    quantize_denoised=False,
         
     | 
| 550 | 
         
            +
                    mask=None,
         
     | 
| 551 | 
         
            +
                    x0=None,
         
     | 
| 552 | 
         
            +
                    shape=None,
         
     | 
| 553 | 
         
            +
                    **kwargs,
         
     | 
| 554 | 
         
            +
                ):
         
     | 
| 555 | 
         
            +
                    if shape is None:
         
     | 
| 556 | 
         
            +
                        shape = (batch_size, self.channels, self.latent_t_size, self.latent_f_size)
         
     | 
| 557 | 
         
            +
                    if cond is not None:
         
     | 
| 558 | 
         
            +
                        if isinstance(cond, dict):
         
     | 
| 559 | 
         
            +
                            cond = {
         
     | 
| 560 | 
         
            +
                                key: cond[key][:batch_size]
         
     | 
| 561 | 
         
            +
                                if not isinstance(cond[key], list)
         
     | 
| 562 | 
         
            +
                                else list(map(lambda x: x[:batch_size], cond[key]))
         
     | 
| 563 | 
         
            +
                                for key in cond
         
     | 
| 564 | 
         
            +
                            }
         
     | 
| 565 | 
         
            +
                        else:
         
     | 
| 566 | 
         
            +
                            cond = (
         
     | 
| 567 | 
         
            +
                                [c[:batch_size] for c in cond]
         
     | 
| 568 | 
         
            +
                                if isinstance(cond, list)
         
     | 
| 569 | 
         
            +
                                else cond[:batch_size]
         
     | 
| 570 | 
         
            +
                            )
         
     | 
| 571 | 
         
            +
                    return self.p_sample_loop(
         
     | 
| 572 | 
         
            +
                        cond,
         
     | 
| 573 | 
         
            +
                        shape,
         
     | 
| 574 | 
         
            +
                        return_intermediates=return_intermediates,
         
     | 
| 575 | 
         
            +
                        x_T=x_T,
         
     | 
| 576 | 
         
            +
                        verbose=verbose,
         
     | 
| 577 | 
         
            +
                        timesteps=timesteps,
         
     | 
| 578 | 
         
            +
                        quantize_denoised=quantize_denoised,
         
     | 
| 579 | 
         
            +
                        mask=mask,
         
     | 
| 580 | 
         
            +
                        x0=x0,
         
     | 
| 581 | 
         
            +
                        **kwargs,
         
     | 
| 582 | 
         
            +
                    )
         
     | 
| 583 | 
         
            +
             
     | 
| 584 | 
         
            +
                @torch.no_grad()
         
     | 
| 585 | 
         
            +
                def sample_log(
         
     | 
| 586 | 
         
            +
                    self,
         
     | 
| 587 | 
         
            +
                    cond,
         
     | 
| 588 | 
         
            +
                    batch_size,
         
     | 
| 589 | 
         
            +
                    ddim,
         
     | 
| 590 | 
         
            +
                    ddim_steps,
         
     | 
| 591 | 
         
            +
                    unconditional_guidance_scale=1.0,
         
     | 
| 592 | 
         
            +
                    unconditional_conditioning=None,
         
     | 
| 593 | 
         
            +
                    use_plms=False,
         
     | 
| 594 | 
         
            +
                    mask=None,
         
     | 
| 595 | 
         
            +
                    **kwargs,
         
     | 
| 596 | 
         
            +
                ):
         
     | 
| 597 | 
         
            +
             
     | 
| 598 | 
         
            +
                    if mask is not None:
         
     | 
| 599 | 
         
            +
                        shape = (self.channels, mask.size()[-2], mask.size()[-1])
         
     | 
| 600 | 
         
            +
                    else:
         
     | 
| 601 | 
         
            +
                        shape = (self.channels, self.latent_t_size, self.latent_f_size)
         
     | 
| 602 | 
         
            +
             
     | 
| 603 | 
         
            +
                    intermediate = None
         
     | 
| 604 | 
         
            +
                    if ddim and not use_plms:
         
     | 
| 605 | 
         
            +
                        # print("Use ddim sampler")
         
     | 
| 606 | 
         
            +
             
     | 
| 607 | 
         
            +
                        ddim_sampler = DDIMSampler(self)
         
     | 
| 608 | 
         
            +
                        samples, intermediates = ddim_sampler.sample(
         
     | 
| 609 | 
         
            +
                            ddim_steps,
         
     | 
| 610 | 
         
            +
                            batch_size,
         
     | 
| 611 | 
         
            +
                            shape,
         
     | 
| 612 | 
         
            +
                            cond,
         
     | 
| 613 | 
         
            +
                            verbose=False,
         
     | 
| 614 | 
         
            +
                            unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 615 | 
         
            +
                            unconditional_conditioning=unconditional_conditioning,
         
     | 
| 616 | 
         
            +
                            mask=mask,
         
     | 
| 617 | 
         
            +
                            **kwargs,
         
     | 
| 618 | 
         
            +
                        )
         
     | 
| 619 | 
         
            +
             
     | 
| 620 | 
         
            +
                    else:
         
     | 
| 621 | 
         
            +
                        # print("Use DDPM sampler")
         
     | 
| 622 | 
         
            +
                        samples, intermediates = self.sample(
         
     | 
| 623 | 
         
            +
                            cond=cond,
         
     | 
| 624 | 
         
            +
                            batch_size=batch_size,
         
     | 
| 625 | 
         
            +
                            return_intermediates=True,
         
     | 
| 626 | 
         
            +
                            unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 627 | 
         
            +
                            mask=mask,
         
     | 
| 628 | 
         
            +
                            unconditional_conditioning=unconditional_conditioning,
         
     | 
| 629 | 
         
            +
                            **kwargs,
         
     | 
| 630 | 
         
            +
                        )
         
     | 
| 631 | 
         
            +
             
     | 
| 632 | 
         
            +
                    return samples, intermediate
         
     | 
| 633 | 
         
            +
             
     | 
| 634 | 
         
            +
                @torch.no_grad()
         
     | 
| 635 | 
         
            +
                def generate_sample(
         
     | 
| 636 | 
         
            +
                    self,
         
     | 
| 637 | 
         
            +
                    batchs,
         
     | 
| 638 | 
         
            +
                    ddim_steps=200,
         
     | 
| 639 | 
         
            +
                    ddim_eta=1.0,
         
     | 
| 640 | 
         
            +
                    x_T=None,
         
     | 
| 641 | 
         
            +
                    n_candidate_gen_per_text=1,
         
     | 
| 642 | 
         
            +
                    unconditional_guidance_scale=1.0,
         
     | 
| 643 | 
         
            +
                    unconditional_conditioning=None,
         
     | 
| 644 | 
         
            +
                    name="waveform",
         
     | 
| 645 | 
         
            +
                    use_plms=False,
         
     | 
| 646 | 
         
            +
                    save=False,
         
     | 
| 647 | 
         
            +
                    **kwargs,
         
     | 
| 648 | 
         
            +
                ):
         
     | 
| 649 | 
         
            +
                    # Generate n_candidate_gen_per_text times and select the best
         
     | 
| 650 | 
         
            +
                    # Batch: audio, text, fnames
         
     | 
| 651 | 
         
            +
                    assert x_T is None
         
     | 
| 652 | 
         
            +
                    try:
         
     | 
| 653 | 
         
            +
                        batchs = iter(batchs)
         
     | 
| 654 | 
         
            +
                    except TypeError:
         
     | 
| 655 | 
         
            +
                        raise ValueError("The first input argument should be an iterable object")
         
     | 
| 656 | 
         
            +
             
     | 
| 657 | 
         
            +
                    if use_plms:
         
     | 
| 658 | 
         
            +
                        assert ddim_steps is not None
         
     | 
| 659 | 
         
            +
                    use_ddim = ddim_steps is not None
         
     | 
| 660 | 
         
            +
                    # waveform_save_path = os.path.join(self.get_log_dir(), name)
         
     | 
| 661 | 
         
            +
                    # os.makedirs(waveform_save_path, exist_ok=True)
         
     | 
| 662 | 
         
            +
                    # print("Waveform save path: ", waveform_save_path)
         
     | 
| 663 | 
         
            +
             
     | 
| 664 | 
         
            +
                    with self.ema_scope("Generate"):
         
     | 
| 665 | 
         
            +
                        for batch in batchs:
         
     | 
| 666 | 
         
            +
                            z, c = self.get_input(
         
     | 
| 667 | 
         
            +
                                batch,
         
     | 
| 668 | 
         
            +
                                self.first_stage_key,
         
     | 
| 669 | 
         
            +
                                cond_key=self.cond_stage_key,
         
     | 
| 670 | 
         
            +
                                return_first_stage_outputs=False,
         
     | 
| 671 | 
         
            +
                                force_c_encode=True,
         
     | 
| 672 | 
         
            +
                                return_original_cond=False,
         
     | 
| 673 | 
         
            +
                                bs=None,
         
     | 
| 674 | 
         
            +
                            )
         
     | 
| 675 | 
         
            +
                            text = super().get_input(batch, "text")
         
     | 
| 676 | 
         
            +
             
     | 
| 677 | 
         
            +
                            # Generate multiple samples
         
     | 
| 678 | 
         
            +
                            batch_size = z.shape[0] * n_candidate_gen_per_text
         
     | 
| 679 | 
         
            +
                            c = torch.cat([c] * n_candidate_gen_per_text, dim=0)
         
     | 
| 680 | 
         
            +
                            text = text * n_candidate_gen_per_text
         
     | 
| 681 | 
         
            +
             
     | 
| 682 | 
         
            +
                            if unconditional_guidance_scale != 1.0:
         
     | 
| 683 | 
         
            +
                                unconditional_conditioning = (
         
     | 
| 684 | 
         
            +
                                    self.cond_stage_model.get_unconditional_condition(batch_size)
         
     | 
| 685 | 
         
            +
                                )
         
     | 
| 686 | 
         
            +
             
     | 
| 687 | 
         
            +
                            samples, _ = self.sample_log(
         
     | 
| 688 | 
         
            +
                                cond=c,
         
     | 
| 689 | 
         
            +
                                batch_size=batch_size,
         
     | 
| 690 | 
         
            +
                                x_T=x_T,
         
     | 
| 691 | 
         
            +
                                ddim=use_ddim,
         
     | 
| 692 | 
         
            +
                                ddim_steps=ddim_steps,
         
     | 
| 693 | 
         
            +
                                eta=ddim_eta,
         
     | 
| 694 | 
         
            +
                                unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 695 | 
         
            +
                                unconditional_conditioning=unconditional_conditioning,
         
     | 
| 696 | 
         
            +
                                use_plms=use_plms,
         
     | 
| 697 | 
         
            +
                            )
         
     | 
| 698 | 
         
            +
                            
         
     | 
| 699 | 
         
            +
                            if(torch.max(torch.abs(samples)) > 1e2):
         
     | 
| 700 | 
         
            +
                                samples = torch.clip(samples, min=-10, max=10)
         
     | 
| 701 | 
         
            +
                                
         
     | 
| 702 | 
         
            +
                            mel = self.decode_first_stage(samples)
         
     | 
| 703 | 
         
            +
             
     | 
| 704 | 
         
            +
                            waveform = self.mel_spectrogram_to_waveform(mel)
         
     | 
| 705 | 
         
            +
             
     | 
| 706 | 
         
            +
                            if waveform.shape[0] > 1:
         
     | 
| 707 | 
         
            +
                                similarity = self.cond_stage_model.cos_similarity(
         
     | 
| 708 | 
         
            +
                                    torch.FloatTensor(waveform).squeeze(1), text
         
     | 
| 709 | 
         
            +
                                )
         
     | 
| 710 | 
         
            +
             
     | 
| 711 | 
         
            +
                                best_index = []
         
     | 
| 712 | 
         
            +
                                for i in range(z.shape[0]):
         
     | 
| 713 | 
         
            +
                                    candidates = similarity[i :: z.shape[0]]
         
     | 
| 714 | 
         
            +
                                    max_index = torch.argmax(candidates).item()
         
     | 
| 715 | 
         
            +
                                    best_index.append(i + max_index * z.shape[0])
         
     | 
| 716 | 
         
            +
             
     | 
| 717 | 
         
            +
                                waveform = waveform[best_index]
         
     | 
| 718 | 
         
            +
                                # print("Similarity between generated audio and text", similarity)
         
     | 
| 719 | 
         
            +
                                # print("Choose the following indexes:", best_index)
         
     | 
| 720 | 
         
            +
             
     | 
| 721 | 
         
            +
                    return waveform
         
     | 
| 722 | 
         
            +
             
     | 
| 723 | 
         
            +
                @torch.no_grad()
         
     | 
| 724 | 
         
            +
                def generate_sample_masked(
         
     | 
| 725 | 
         
            +
                    self,
         
     | 
| 726 | 
         
            +
                    batchs,
         
     | 
| 727 | 
         
            +
                    ddim_steps=200,
         
     | 
| 728 | 
         
            +
                    ddim_eta=1.0,
         
     | 
| 729 | 
         
            +
                    x_T=None,
         
     | 
| 730 | 
         
            +
                    n_candidate_gen_per_text=1,
         
     | 
| 731 | 
         
            +
                    unconditional_guidance_scale=1.0,
         
     | 
| 732 | 
         
            +
                    unconditional_conditioning=None,
         
     | 
| 733 | 
         
            +
                    name="waveform",
         
     | 
| 734 | 
         
            +
                    use_plms=False,
         
     | 
| 735 | 
         
            +
                    time_mask_ratio_start_and_end=(0.25, 0.75),
         
     | 
| 736 | 
         
            +
                    freq_mask_ratio_start_and_end=(0.75, 1.0),
         
     | 
| 737 | 
         
            +
                    save=False,
         
     | 
| 738 | 
         
            +
                    **kwargs,
         
     | 
| 739 | 
         
            +
                ):
         
     | 
| 740 | 
         
            +
                    # Generate n_candidate_gen_per_text times and select the best
         
     | 
| 741 | 
         
            +
                    # Batch: audio, text, fnames
         
     | 
| 742 | 
         
            +
                    assert x_T is None
         
     | 
| 743 | 
         
            +
                    try:
         
     | 
| 744 | 
         
            +
                        batchs = iter(batchs)
         
     | 
| 745 | 
         
            +
                    except TypeError:
         
     | 
| 746 | 
         
            +
                        raise ValueError("The first input argument should be an iterable object")
         
     | 
| 747 | 
         
            +
             
     | 
| 748 | 
         
            +
                    if use_plms:
         
     | 
| 749 | 
         
            +
                        assert ddim_steps is not None
         
     | 
| 750 | 
         
            +
                    use_ddim = ddim_steps is not None
         
     | 
| 751 | 
         
            +
                    # waveform_save_path = os.path.join(self.get_log_dir(), name)
         
     | 
| 752 | 
         
            +
                    # os.makedirs(waveform_save_path, exist_ok=True)
         
     | 
| 753 | 
         
            +
                    # print("Waveform save path: ", waveform_save_path)
         
     | 
| 754 | 
         
            +
             
     | 
| 755 | 
         
            +
                    with self.ema_scope("Generate"):
         
     | 
| 756 | 
         
            +
                        for batch in batchs:
         
     | 
| 757 | 
         
            +
                            z, c = self.get_input(
         
     | 
| 758 | 
         
            +
                                batch,
         
     | 
| 759 | 
         
            +
                                self.first_stage_key,
         
     | 
| 760 | 
         
            +
                                cond_key=self.cond_stage_key,
         
     | 
| 761 | 
         
            +
                                return_first_stage_outputs=False,
         
     | 
| 762 | 
         
            +
                                force_c_encode=True,
         
     | 
| 763 | 
         
            +
                                return_original_cond=False,
         
     | 
| 764 | 
         
            +
                                bs=None,
         
     | 
| 765 | 
         
            +
                            )
         
     | 
| 766 | 
         
            +
                            text = super().get_input(batch, "text")
         
     | 
| 767 | 
         
            +
                            
         
     | 
| 768 | 
         
            +
                            # Generate multiple samples
         
     | 
| 769 | 
         
            +
                            batch_size = z.shape[0] * n_candidate_gen_per_text
         
     | 
| 770 | 
         
            +
                            
         
     | 
| 771 | 
         
            +
                            _, h, w = z.shape[0], z.shape[2], z.shape[3]
         
     | 
| 772 | 
         
            +
                            
         
     | 
| 773 | 
         
            +
                            mask = torch.ones(batch_size, h, w).to(self.device)
         
     | 
| 774 | 
         
            +
                            
         
     | 
| 775 | 
         
            +
                            mask[:, int(h * time_mask_ratio_start_and_end[0]) : int(h * time_mask_ratio_start_and_end[1]), :] = 0 
         
     | 
| 776 | 
         
            +
                            mask[:, :, int(w * freq_mask_ratio_start_and_end[0]) : int(w * freq_mask_ratio_start_and_end[1])] = 0 
         
     | 
| 777 | 
         
            +
                            mask = mask[:, None, ...]
         
     | 
| 778 | 
         
            +
                            
         
     | 
| 779 | 
         
            +
                            c = torch.cat([c] * n_candidate_gen_per_text, dim=0)
         
     | 
| 780 | 
         
            +
                            text = text * n_candidate_gen_per_text
         
     | 
| 781 | 
         
            +
             
     | 
| 782 | 
         
            +
                            if unconditional_guidance_scale != 1.0:
         
     | 
| 783 | 
         
            +
                                unconditional_conditioning = (
         
     | 
| 784 | 
         
            +
                                    self.cond_stage_model.get_unconditional_condition(batch_size)
         
     | 
| 785 | 
         
            +
                                )
         
     | 
| 786 | 
         
            +
             
     | 
| 787 | 
         
            +
                            samples, _ = self.sample_log(
         
     | 
| 788 | 
         
            +
                                cond=c,
         
     | 
| 789 | 
         
            +
                                batch_size=batch_size,
         
     | 
| 790 | 
         
            +
                                x_T=x_T,
         
     | 
| 791 | 
         
            +
                                ddim=use_ddim,
         
     | 
| 792 | 
         
            +
                                ddim_steps=ddim_steps,
         
     | 
| 793 | 
         
            +
                                eta=ddim_eta,
         
     | 
| 794 | 
         
            +
                                unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 795 | 
         
            +
                                unconditional_conditioning=unconditional_conditioning,
         
     | 
| 796 | 
         
            +
                                use_plms=use_plms, mask=mask, x0=torch.cat([z] * n_candidate_gen_per_text)
         
     | 
| 797 | 
         
            +
                            )
         
     | 
| 798 | 
         
            +
             
     | 
| 799 | 
         
            +
                            mel = self.decode_first_stage(samples)
         
     | 
| 800 | 
         
            +
             
     | 
| 801 | 
         
            +
                            waveform = self.mel_spectrogram_to_waveform(mel)
         
     | 
| 802 | 
         
            +
             
     | 
| 803 | 
         
            +
                            if waveform.shape[0] > 1:
         
     | 
| 804 | 
         
            +
                                similarity = self.cond_stage_model.cos_similarity(
         
     | 
| 805 | 
         
            +
                                    torch.FloatTensor(waveform).squeeze(1), text
         
     | 
| 806 | 
         
            +
                                )
         
     | 
| 807 | 
         
            +
             
     | 
| 808 | 
         
            +
                                best_index = []
         
     | 
| 809 | 
         
            +
                                for i in range(z.shape[0]):
         
     | 
| 810 | 
         
            +
                                    candidates = similarity[i :: z.shape[0]]
         
     | 
| 811 | 
         
            +
                                    max_index = torch.argmax(candidates).item()
         
     | 
| 812 | 
         
            +
                                    best_index.append(i + max_index * z.shape[0])
         
     | 
| 813 | 
         
            +
             
     | 
| 814 | 
         
            +
                                waveform = waveform[best_index]
         
     | 
| 815 | 
         
            +
                                # print("Similarity between generated audio and text", similarity)
         
     | 
| 816 | 
         
            +
                                # print("Choose the following indexes:", best_index)
         
     | 
| 817 | 
         
            +
             
     | 
| 818 | 
         
            +
                    return waveform
         
     | 
    	
        audioldm/pipeline.py
    ADDED
    
    | 
         @@ -0,0 +1,301 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            import argparse
         
     | 
| 4 | 
         
            +
            import yaml
         
     | 
| 5 | 
         
            +
            import torch
         
     | 
| 6 | 
         
            +
            from torch import autocast
         
     | 
| 7 | 
         
            +
            from tqdm import tqdm, trange
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            from audioldm import LatentDiffusion, seed_everything
         
     | 
| 10 | 
         
            +
            from audioldm.utils import default_audioldm_config, get_duration, get_bit_depth, get_metadata, download_checkpoint
         
     | 
| 11 | 
         
            +
            from audioldm.audio import wav_to_fbank, TacotronSTFT, read_wav_file
         
     | 
| 12 | 
         
            +
            from audioldm.latent_diffusion.ddim import DDIMSampler
         
     | 
| 13 | 
         
            +
            from einops import repeat
         
     | 
| 14 | 
         
            +
            import os
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            def make_batch_for_text_to_audio(text, waveform=None, fbank=None, batchsize=1):
         
     | 
| 17 | 
         
            +
                text = [text] * batchsize
         
     | 
| 18 | 
         
            +
                if batchsize < 1:
         
     | 
| 19 | 
         
            +
                    print("Warning: Batchsize must be at least 1. Batchsize is set to .")
         
     | 
| 20 | 
         
            +
                
         
     | 
| 21 | 
         
            +
                if(fbank is None):
         
     | 
| 22 | 
         
            +
                    fbank = torch.zeros((batchsize, 1024, 64))  # Not used, here to keep the code format
         
     | 
| 23 | 
         
            +
                else:
         
     | 
| 24 | 
         
            +
                    fbank = torch.FloatTensor(fbank)
         
     | 
| 25 | 
         
            +
                    fbank = fbank.expand(batchsize, 1024, 64)
         
     | 
| 26 | 
         
            +
                    assert fbank.size(0) == batchsize
         
     | 
| 27 | 
         
            +
                    
         
     | 
| 28 | 
         
            +
                stft = torch.zeros((batchsize, 1024, 512))  # Not used
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                if(waveform is None):
         
     | 
| 31 | 
         
            +
                    waveform = torch.zeros((batchsize, 160000))  # Not used
         
     | 
| 32 | 
         
            +
                else:
         
     | 
| 33 | 
         
            +
                    waveform = torch.FloatTensor(waveform)
         
     | 
| 34 | 
         
            +
                    waveform = waveform.expand(batchsize, -1)
         
     | 
| 35 | 
         
            +
                    assert waveform.size(0) == batchsize
         
     | 
| 36 | 
         
            +
                    
         
     | 
| 37 | 
         
            +
                fname = [""] * batchsize  # Not used
         
     | 
| 38 | 
         
            +
                
         
     | 
| 39 | 
         
            +
                batch = (
         
     | 
| 40 | 
         
            +
                    fbank,
         
     | 
| 41 | 
         
            +
                    stft,
         
     | 
| 42 | 
         
            +
                    None,
         
     | 
| 43 | 
         
            +
                    fname,
         
     | 
| 44 | 
         
            +
                    waveform,
         
     | 
| 45 | 
         
            +
                    text,
         
     | 
| 46 | 
         
            +
                )
         
     | 
| 47 | 
         
            +
                return batch
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
            def round_up_duration(duration):
         
     | 
| 50 | 
         
            +
                return int(round(duration/2.5) + 1) * 2.5
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            def build_model(
         
     | 
| 53 | 
         
            +
                ckpt_path=None,
         
     | 
| 54 | 
         
            +
                config=None,
         
     | 
| 55 | 
         
            +
                model_name="audioldm-s-full"
         
     | 
| 56 | 
         
            +
            ):
         
     | 
| 57 | 
         
            +
                print("Load AudioLDM: %s", model_name)
         
     | 
| 58 | 
         
            +
                
         
     | 
| 59 | 
         
            +
                if(ckpt_path is None):
         
     | 
| 60 | 
         
            +
                    ckpt_path = get_metadata()[model_name]["path"]
         
     | 
| 61 | 
         
            +
                
         
     | 
| 62 | 
         
            +
                if(not os.path.exists(ckpt_path)):
         
     | 
| 63 | 
         
            +
                    download_checkpoint(model_name)
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
                if torch.cuda.is_available():
         
     | 
| 66 | 
         
            +
                    device = torch.device("cuda:0")
         
     | 
| 67 | 
         
            +
                else:
         
     | 
| 68 | 
         
            +
                    device = torch.device("cpu")
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                if config is not None:
         
     | 
| 71 | 
         
            +
                    assert type(config) is str
         
     | 
| 72 | 
         
            +
                    config = yaml.load(open(config, "r"), Loader=yaml.FullLoader)
         
     | 
| 73 | 
         
            +
                else:
         
     | 
| 74 | 
         
            +
                    config = default_audioldm_config(model_name)
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                # Use text as condition instead of using waveform during training
         
     | 
| 77 | 
         
            +
                config["model"]["params"]["device"] = device
         
     | 
| 78 | 
         
            +
                config["model"]["params"]["cond_stage_key"] = "text"
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
                # No normalization here
         
     | 
| 81 | 
         
            +
                latent_diffusion = LatentDiffusion(**config["model"]["params"])
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                resume_from_checkpoint = ckpt_path
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                checkpoint = torch.load(resume_from_checkpoint, map_location=device)
         
     | 
| 86 | 
         
            +
                latent_diffusion.load_state_dict(checkpoint["state_dict"])
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                latent_diffusion.eval()
         
     | 
| 89 | 
         
            +
                latent_diffusion = latent_diffusion.to(device)
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                latent_diffusion.cond_stage_model.embed_mode = "text"
         
     | 
| 92 | 
         
            +
                return latent_diffusion
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
            def duration_to_latent_t_size(duration):
         
     | 
| 95 | 
         
            +
                return int(duration * 25.6)
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
            def set_cond_audio(latent_diffusion):
         
     | 
| 98 | 
         
            +
                latent_diffusion.cond_stage_key = "waveform"
         
     | 
| 99 | 
         
            +
                latent_diffusion.cond_stage_model.embed_mode="audio"
         
     | 
| 100 | 
         
            +
                return latent_diffusion
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
            def set_cond_text(latent_diffusion):
         
     | 
| 103 | 
         
            +
                latent_diffusion.cond_stage_key = "text"
         
     | 
| 104 | 
         
            +
                latent_diffusion.cond_stage_model.embed_mode="text"
         
     | 
| 105 | 
         
            +
                return latent_diffusion
         
     | 
| 106 | 
         
            +
                
         
     | 
| 107 | 
         
            +
            def text_to_audio(
         
     | 
| 108 | 
         
            +
                latent_diffusion,
         
     | 
| 109 | 
         
            +
                text,
         
     | 
| 110 | 
         
            +
                original_audio_file_path = None,
         
     | 
| 111 | 
         
            +
                seed=42,
         
     | 
| 112 | 
         
            +
                ddim_steps=200,
         
     | 
| 113 | 
         
            +
                duration=10,
         
     | 
| 114 | 
         
            +
                batchsize=1,
         
     | 
| 115 | 
         
            +
                guidance_scale=2.5,
         
     | 
| 116 | 
         
            +
                n_candidate_gen_per_text=3,
         
     | 
| 117 | 
         
            +
                config=None,
         
     | 
| 118 | 
         
            +
            ):
         
     | 
| 119 | 
         
            +
                seed_everything(int(seed))
         
     | 
| 120 | 
         
            +
                waveform = None
         
     | 
| 121 | 
         
            +
                if(original_audio_file_path is not None):
         
     | 
| 122 | 
         
            +
                    waveform = read_wav_file(original_audio_file_path, int(duration * 102.4) * 160)
         
     | 
| 123 | 
         
            +
                    
         
     | 
| 124 | 
         
            +
                batch = make_batch_for_text_to_audio(text, waveform=waveform, batchsize=batchsize)
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                latent_diffusion.latent_t_size = duration_to_latent_t_size(duration)
         
     | 
| 127 | 
         
            +
                
         
     | 
| 128 | 
         
            +
                if(waveform is not None):
         
     | 
| 129 | 
         
            +
                    print("Generate audio that has similar content as %s" % original_audio_file_path)
         
     | 
| 130 | 
         
            +
                    latent_diffusion = set_cond_audio(latent_diffusion)
         
     | 
| 131 | 
         
            +
                else:
         
     | 
| 132 | 
         
            +
                    print("Generate audio using text %s" % text)
         
     | 
| 133 | 
         
            +
                    latent_diffusion = set_cond_text(latent_diffusion)
         
     | 
| 134 | 
         
            +
                    
         
     | 
| 135 | 
         
            +
                with torch.no_grad():
         
     | 
| 136 | 
         
            +
                    waveform = latent_diffusion.generate_sample(
         
     | 
| 137 | 
         
            +
                        [batch],
         
     | 
| 138 | 
         
            +
                        unconditional_guidance_scale=guidance_scale,
         
     | 
| 139 | 
         
            +
                        ddim_steps=ddim_steps,
         
     | 
| 140 | 
         
            +
                        n_candidate_gen_per_text=n_candidate_gen_per_text,
         
     | 
| 141 | 
         
            +
                        duration=duration,
         
     | 
| 142 | 
         
            +
                    )
         
     | 
| 143 | 
         
            +
                return waveform
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
            def style_transfer(
         
     | 
| 146 | 
         
            +
                latent_diffusion,
         
     | 
| 147 | 
         
            +
                text,
         
     | 
| 148 | 
         
            +
                original_audio_file_path,
         
     | 
| 149 | 
         
            +
                transfer_strength,
         
     | 
| 150 | 
         
            +
                seed=42,
         
     | 
| 151 | 
         
            +
                duration=10,
         
     | 
| 152 | 
         
            +
                batchsize=1,
         
     | 
| 153 | 
         
            +
                guidance_scale=2.5,
         
     | 
| 154 | 
         
            +
                ddim_steps=200,
         
     | 
| 155 | 
         
            +
                config=None,
         
     | 
| 156 | 
         
            +
            ):
         
     | 
| 157 | 
         
            +
                if torch.cuda.is_available():
         
     | 
| 158 | 
         
            +
                    device = torch.device("cuda:0")
         
     | 
| 159 | 
         
            +
                else:
         
     | 
| 160 | 
         
            +
                    device = torch.device("cpu")
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                assert original_audio_file_path is not None, "You need to provide the original audio file path"
         
     | 
| 163 | 
         
            +
                
         
     | 
| 164 | 
         
            +
                audio_file_duration = get_duration(original_audio_file_path)
         
     | 
| 165 | 
         
            +
                
         
     | 
| 166 | 
         
            +
                assert get_bit_depth(original_audio_file_path) == 16, "The bit depth of the original audio file %s must be 16" % original_audio_file_path
         
     | 
| 167 | 
         
            +
                
         
     | 
| 168 | 
         
            +
                # if(duration > 20):
         
     | 
| 169 | 
         
            +
                #     print("Warning: The duration of the audio file %s must be less than 20 seconds. Longer duration will result in Nan in model output (we are still debugging that); Automatically set duration to 20 seconds")
         
     | 
| 170 | 
         
            +
                #     duration = 20
         
     | 
| 171 | 
         
            +
                
         
     | 
| 172 | 
         
            +
                if(duration >= audio_file_duration):
         
     | 
| 173 | 
         
            +
                    print("Warning: Duration you specified %s-seconds must equal or smaller than the audio file duration %ss" % (duration, audio_file_duration))
         
     | 
| 174 | 
         
            +
                    duration = round_up_duration(audio_file_duration)
         
     | 
| 175 | 
         
            +
                    print("Set new duration as %s-seconds" % duration)
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                # duration = round_up_duration(duration)
         
     | 
| 178 | 
         
            +
                
         
     | 
| 179 | 
         
            +
                latent_diffusion = set_cond_text(latent_diffusion)
         
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
                if config is not None:
         
     | 
| 182 | 
         
            +
                    assert type(config) is str
         
     | 
| 183 | 
         
            +
                    config = yaml.load(open(config, "r"), Loader=yaml.FullLoader)
         
     | 
| 184 | 
         
            +
                else:
         
     | 
| 185 | 
         
            +
                    config = default_audioldm_config()
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
                seed_everything(int(seed))
         
     | 
| 188 | 
         
            +
                # latent_diffusion.latent_t_size = duration_to_latent_t_size(duration)
         
     | 
| 189 | 
         
            +
                latent_diffusion.cond_stage_model.embed_mode = "text"
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                fn_STFT = TacotronSTFT(
         
     | 
| 192 | 
         
            +
                    config["preprocessing"]["stft"]["filter_length"],
         
     | 
| 193 | 
         
            +
                    config["preprocessing"]["stft"]["hop_length"],
         
     | 
| 194 | 
         
            +
                    config["preprocessing"]["stft"]["win_length"],
         
     | 
| 195 | 
         
            +
                    config["preprocessing"]["mel"]["n_mel_channels"],
         
     | 
| 196 | 
         
            +
                    config["preprocessing"]["audio"]["sampling_rate"],
         
     | 
| 197 | 
         
            +
                    config["preprocessing"]["mel"]["mel_fmin"],
         
     | 
| 198 | 
         
            +
                    config["preprocessing"]["mel"]["mel_fmax"],
         
     | 
| 199 | 
         
            +
                )
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                mel, _, _ = wav_to_fbank(
         
     | 
| 202 | 
         
            +
                    original_audio_file_path, target_length=int(duration * 102.4), fn_STFT=fn_STFT
         
     | 
| 203 | 
         
            +
                )
         
     | 
| 204 | 
         
            +
                mel = mel.unsqueeze(0).unsqueeze(0).to(device)
         
     | 
| 205 | 
         
            +
                mel = repeat(mel, "1 ... -> b ...", b=batchsize)
         
     | 
| 206 | 
         
            +
                init_latent = latent_diffusion.get_first_stage_encoding(
         
     | 
| 207 | 
         
            +
                    latent_diffusion.encode_first_stage(mel)
         
     | 
| 208 | 
         
            +
                )  # move to latent space, encode and sample
         
     | 
| 209 | 
         
            +
                if(torch.max(torch.abs(init_latent)) > 1e2):
         
     | 
| 210 | 
         
            +
                    init_latent = torch.clip(init_latent, min=-10, max=10)
         
     | 
| 211 | 
         
            +
                sampler = DDIMSampler(latent_diffusion)
         
     | 
| 212 | 
         
            +
                sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=1.0, verbose=False)
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                t_enc = int(transfer_strength * ddim_steps)
         
     | 
| 215 | 
         
            +
                prompts = text
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
                with torch.no_grad():
         
     | 
| 218 | 
         
            +
                    with autocast("cuda"):
         
     | 
| 219 | 
         
            +
                        with latent_diffusion.ema_scope():
         
     | 
| 220 | 
         
            +
                            uc = None
         
     | 
| 221 | 
         
            +
                            if guidance_scale != 1.0:
         
     | 
| 222 | 
         
            +
                                uc = latent_diffusion.cond_stage_model.get_unconditional_condition(
         
     | 
| 223 | 
         
            +
                                    batchsize
         
     | 
| 224 | 
         
            +
                                )
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                            c = latent_diffusion.get_learned_conditioning([prompts] * batchsize)
         
     | 
| 227 | 
         
            +
                            z_enc = sampler.stochastic_encode(
         
     | 
| 228 | 
         
            +
                                init_latent, torch.tensor([t_enc] * batchsize).to(device)
         
     | 
| 229 | 
         
            +
                            )
         
     | 
| 230 | 
         
            +
                            samples = sampler.decode(
         
     | 
| 231 | 
         
            +
                                z_enc,
         
     | 
| 232 | 
         
            +
                                c,
         
     | 
| 233 | 
         
            +
                                t_enc,
         
     | 
| 234 | 
         
            +
                                unconditional_guidance_scale=guidance_scale,
         
     | 
| 235 | 
         
            +
                                unconditional_conditioning=uc,
         
     | 
| 236 | 
         
            +
                            )
         
     | 
| 237 | 
         
            +
                            # x_samples = latent_diffusion.decode_first_stage(samples) # Will result in Nan in output
         
     | 
| 238 | 
         
            +
                            # print(torch.sum(torch.isnan(samples)))
         
     | 
| 239 | 
         
            +
                            x_samples = latent_diffusion.decode_first_stage(samples)
         
     | 
| 240 | 
         
            +
                            # print(x_samples)
         
     | 
| 241 | 
         
            +
                            x_samples = latent_diffusion.decode_first_stage(samples[:,:,:-3,:])
         
     | 
| 242 | 
         
            +
                            # print(x_samples)
         
     | 
| 243 | 
         
            +
                            waveform = latent_diffusion.first_stage_model.decode_to_waveform(
         
     | 
| 244 | 
         
            +
                                x_samples
         
     | 
| 245 | 
         
            +
                            )
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
                return waveform
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
            def super_resolution_and_inpainting(
         
     | 
| 250 | 
         
            +
                latent_diffusion,
         
     | 
| 251 | 
         
            +
                text,
         
     | 
| 252 | 
         
            +
                original_audio_file_path = None,
         
     | 
| 253 | 
         
            +
                seed=42,
         
     | 
| 254 | 
         
            +
                ddim_steps=200,
         
     | 
| 255 | 
         
            +
                duration=None,
         
     | 
| 256 | 
         
            +
                batchsize=1,
         
     | 
| 257 | 
         
            +
                guidance_scale=2.5,
         
     | 
| 258 | 
         
            +
                n_candidate_gen_per_text=3,
         
     | 
| 259 | 
         
            +
                time_mask_ratio_start_and_end=(0.10, 0.15), # regenerate the 10% to 15% of the time steps in the spectrogram
         
     | 
| 260 | 
         
            +
                # time_mask_ratio_start_and_end=(1.0, 1.0), # no inpainting
         
     | 
| 261 | 
         
            +
                # freq_mask_ratio_start_and_end=(0.75, 1.0), # regenerate the higher 75% to 100% mel bins
         
     | 
| 262 | 
         
            +
                freq_mask_ratio_start_and_end=(1.0, 1.0), # no super-resolution
         
     | 
| 263 | 
         
            +
                config=None,
         
     | 
| 264 | 
         
            +
            ):
         
     | 
| 265 | 
         
            +
                seed_everything(int(seed))
         
     | 
| 266 | 
         
            +
                if config is not None:
         
     | 
| 267 | 
         
            +
                    assert type(config) is str
         
     | 
| 268 | 
         
            +
                    config = yaml.load(open(config, "r"), Loader=yaml.FullLoader)
         
     | 
| 269 | 
         
            +
                else:
         
     | 
| 270 | 
         
            +
                    config = default_audioldm_config()
         
     | 
| 271 | 
         
            +
                fn_STFT = TacotronSTFT(
         
     | 
| 272 | 
         
            +
                    config["preprocessing"]["stft"]["filter_length"],
         
     | 
| 273 | 
         
            +
                    config["preprocessing"]["stft"]["hop_length"],
         
     | 
| 274 | 
         
            +
                    config["preprocessing"]["stft"]["win_length"],
         
     | 
| 275 | 
         
            +
                    config["preprocessing"]["mel"]["n_mel_channels"],
         
     | 
| 276 | 
         
            +
                    config["preprocessing"]["audio"]["sampling_rate"],
         
     | 
| 277 | 
         
            +
                    config["preprocessing"]["mel"]["mel_fmin"],
         
     | 
| 278 | 
         
            +
                    config["preprocessing"]["mel"]["mel_fmax"],
         
     | 
| 279 | 
         
            +
                )
         
     | 
| 280 | 
         
            +
                
         
     | 
| 281 | 
         
            +
                # waveform = read_wav_file(original_audio_file_path, None)
         
     | 
| 282 | 
         
            +
                mel, _, _ = wav_to_fbank(
         
     | 
| 283 | 
         
            +
                    original_audio_file_path, target_length=int(duration * 102.4), fn_STFT=fn_STFT
         
     | 
| 284 | 
         
            +
                )
         
     | 
| 285 | 
         
            +
                
         
     | 
| 286 | 
         
            +
                batch = make_batch_for_text_to_audio(text, fbank=mel[None,...], batchsize=batchsize)
         
     | 
| 287 | 
         
            +
                    
         
     | 
| 288 | 
         
            +
                # latent_diffusion.latent_t_size = duration_to_latent_t_size(duration)
         
     | 
| 289 | 
         
            +
                latent_diffusion = set_cond_text(latent_diffusion)
         
     | 
| 290 | 
         
            +
                    
         
     | 
| 291 | 
         
            +
                with torch.no_grad():
         
     | 
| 292 | 
         
            +
                    waveform = latent_diffusion.generate_sample_masked(
         
     | 
| 293 | 
         
            +
                        [batch],
         
     | 
| 294 | 
         
            +
                        unconditional_guidance_scale=guidance_scale,
         
     | 
| 295 | 
         
            +
                        ddim_steps=ddim_steps,
         
     | 
| 296 | 
         
            +
                        n_candidate_gen_per_text=n_candidate_gen_per_text,
         
     | 
| 297 | 
         
            +
                        duration=duration,
         
     | 
| 298 | 
         
            +
                        time_mask_ratio_start_and_end=time_mask_ratio_start_and_end,
         
     | 
| 299 | 
         
            +
                        freq_mask_ratio_start_and_end=freq_mask_ratio_start_and_end
         
     | 
| 300 | 
         
            +
                    )
         
     | 
| 301 | 
         
            +
                return waveform
         
     | 
    	
        audioldm/utils.py
    ADDED
    
    | 
         @@ -0,0 +1,281 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import contextlib
         
     | 
| 2 | 
         
            +
            import importlib
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            from inspect import isfunction
         
     | 
| 5 | 
         
            +
            import os
         
     | 
| 6 | 
         
            +
            import soundfile as sf
         
     | 
| 7 | 
         
            +
            import time
         
     | 
| 8 | 
         
            +
            import wave
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            import urllib.request
         
     | 
| 11 | 
         
            +
            import progressbar
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            CACHE_DIR = os.getenv(
         
     | 
| 14 | 
         
            +
                "AUDIOLDM_CACHE_DIR",
         
     | 
| 15 | 
         
            +
                os.path.join(os.path.expanduser("~"), ".cache/audioldm"))
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            def get_duration(fname):
         
     | 
| 18 | 
         
            +
                with contextlib.closing(wave.open(fname, 'r')) as f:
         
     | 
| 19 | 
         
            +
                    frames = f.getnframes()
         
     | 
| 20 | 
         
            +
                    rate = f.getframerate()
         
     | 
| 21 | 
         
            +
                    return frames / float(rate)
         
     | 
| 22 | 
         
            +
                
         
     | 
| 23 | 
         
            +
            def get_bit_depth(fname):
         
     | 
| 24 | 
         
            +
                with contextlib.closing(wave.open(fname, 'r')) as f:
         
     | 
| 25 | 
         
            +
                    bit_depth = f.getsampwidth() * 8
         
     | 
| 26 | 
         
            +
                    return bit_depth
         
     | 
| 27 | 
         
            +
                   
         
     | 
| 28 | 
         
            +
            def get_time():
         
     | 
| 29 | 
         
            +
                t = time.localtime()
         
     | 
| 30 | 
         
            +
                return time.strftime("%d_%m_%Y_%H_%M_%S", t)
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            def seed_everything(seed):
         
     | 
| 33 | 
         
            +
                import random, os
         
     | 
| 34 | 
         
            +
                import numpy as np
         
     | 
| 35 | 
         
            +
                import torch
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                random.seed(seed)
         
     | 
| 38 | 
         
            +
                os.environ["PYTHONHASHSEED"] = str(seed)
         
     | 
| 39 | 
         
            +
                np.random.seed(seed)
         
     | 
| 40 | 
         
            +
                torch.manual_seed(seed)
         
     | 
| 41 | 
         
            +
                torch.cuda.manual_seed(seed)
         
     | 
| 42 | 
         
            +
                torch.backends.cudnn.deterministic = True
         
     | 
| 43 | 
         
            +
                torch.backends.cudnn.benchmark = True
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            def save_wave(waveform, savepath, name="outwav"):
         
     | 
| 47 | 
         
            +
                if type(name) is not list:
         
     | 
| 48 | 
         
            +
                    name = [name] * waveform.shape[0]
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                for i in range(waveform.shape[0]):
         
     | 
| 51 | 
         
            +
                    path = os.path.join(
         
     | 
| 52 | 
         
            +
                        savepath,
         
     | 
| 53 | 
         
            +
                        "%s_%s.wav"
         
     | 
| 54 | 
         
            +
                        % (
         
     | 
| 55 | 
         
            +
                            os.path.basename(name[i])
         
     | 
| 56 | 
         
            +
                            if (not ".wav" in name[i])
         
     | 
| 57 | 
         
            +
                            else os.path.basename(name[i]).split(".")[0],
         
     | 
| 58 | 
         
            +
                            i,
         
     | 
| 59 | 
         
            +
                        ),
         
     | 
| 60 | 
         
            +
                    )
         
     | 
| 61 | 
         
            +
                    print("Save audio to %s" % path)
         
     | 
| 62 | 
         
            +
                    sf.write(path, waveform[i, 0], samplerate=16000)
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
            def exists(x):
         
     | 
| 66 | 
         
            +
                return x is not None
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            def default(val, d):
         
     | 
| 70 | 
         
            +
                if exists(val):
         
     | 
| 71 | 
         
            +
                    return val
         
     | 
| 72 | 
         
            +
                return d() if isfunction(d) else d
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
            def count_params(model, verbose=False):
         
     | 
| 76 | 
         
            +
                total_params = sum(p.numel() for p in model.parameters())
         
     | 
| 77 | 
         
            +
                if verbose:
         
     | 
| 78 | 
         
            +
                    print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
         
     | 
| 79 | 
         
            +
                return total_params
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
            def get_obj_from_str(string, reload=False):
         
     | 
| 83 | 
         
            +
                module, cls = string.rsplit(".", 1)
         
     | 
| 84 | 
         
            +
                if reload:
         
     | 
| 85 | 
         
            +
                    module_imp = importlib.import_module(module)
         
     | 
| 86 | 
         
            +
                    importlib.reload(module_imp)
         
     | 
| 87 | 
         
            +
                return getattr(importlib.import_module(module, package=None), cls)
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
            def instantiate_from_config(config):
         
     | 
| 91 | 
         
            +
                if not "target" in config:
         
     | 
| 92 | 
         
            +
                    if config == "__is_first_stage__":
         
     | 
| 93 | 
         
            +
                        return None
         
     | 
| 94 | 
         
            +
                    elif config == "__is_unconditional__":
         
     | 
| 95 | 
         
            +
                        return None
         
     | 
| 96 | 
         
            +
                    raise KeyError("Expected key `target` to instantiate.")
         
     | 
| 97 | 
         
            +
                return get_obj_from_str(config["target"])(**config.get("params", dict()))
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
            def default_audioldm_config(model_name="audioldm-s-full"):    
         
     | 
| 101 | 
         
            +
                basic_config = {
         
     | 
| 102 | 
         
            +
                    "wave_file_save_path": "./output",
         
     | 
| 103 | 
         
            +
                    "id": {
         
     | 
| 104 | 
         
            +
                        "version": "v1",
         
     | 
| 105 | 
         
            +
                        "name": "default",
         
     | 
| 106 | 
         
            +
                        "root": "/mnt/fast/nobackup/users/hl01486/projects/general_audio_generation/AudioLDM-python/config/default/latent_diffusion.yaml",
         
     | 
| 107 | 
         
            +
                    },
         
     | 
| 108 | 
         
            +
                    "preprocessing": {
         
     | 
| 109 | 
         
            +
                        "audio": {"sampling_rate": 16000, "max_wav_value": 32768},
         
     | 
| 110 | 
         
            +
                        "stft": {"filter_length": 1024, "hop_length": 160, "win_length": 1024},
         
     | 
| 111 | 
         
            +
                        "mel": {
         
     | 
| 112 | 
         
            +
                            "n_mel_channels": 64,
         
     | 
| 113 | 
         
            +
                            "mel_fmin": 0,
         
     | 
| 114 | 
         
            +
                            "mel_fmax": 8000,
         
     | 
| 115 | 
         
            +
                            "freqm": 0,
         
     | 
| 116 | 
         
            +
                            "timem": 0,
         
     | 
| 117 | 
         
            +
                            "blur": False,
         
     | 
| 118 | 
         
            +
                            "mean": -4.63,
         
     | 
| 119 | 
         
            +
                            "std": 2.74,
         
     | 
| 120 | 
         
            +
                            "target_length": 1024,
         
     | 
| 121 | 
         
            +
                        },
         
     | 
| 122 | 
         
            +
                    },
         
     | 
| 123 | 
         
            +
                    "model": {
         
     | 
| 124 | 
         
            +
                        "device": "cuda",
         
     | 
| 125 | 
         
            +
                        "target": "audioldm.pipline.LatentDiffusion",
         
     | 
| 126 | 
         
            +
                        "params": {
         
     | 
| 127 | 
         
            +
                            "base_learning_rate": 5e-06,
         
     | 
| 128 | 
         
            +
                            "linear_start": 0.0015,
         
     | 
| 129 | 
         
            +
                            "linear_end": 0.0195,
         
     | 
| 130 | 
         
            +
                            "num_timesteps_cond": 1,
         
     | 
| 131 | 
         
            +
                            "log_every_t": 200,
         
     | 
| 132 | 
         
            +
                            "timesteps": 1000,
         
     | 
| 133 | 
         
            +
                            "first_stage_key": "fbank",
         
     | 
| 134 | 
         
            +
                            "cond_stage_key": "waveform",
         
     | 
| 135 | 
         
            +
                            "latent_t_size": 256,
         
     | 
| 136 | 
         
            +
                            "latent_f_size": 16,
         
     | 
| 137 | 
         
            +
                            "channels": 8,
         
     | 
| 138 | 
         
            +
                            "cond_stage_trainable": True,
         
     | 
| 139 | 
         
            +
                            "conditioning_key": "film",
         
     | 
| 140 | 
         
            +
                            "monitor": "val/loss_simple_ema",
         
     | 
| 141 | 
         
            +
                            "scale_by_std": True,
         
     | 
| 142 | 
         
            +
                            "unet_config": {
         
     | 
| 143 | 
         
            +
                                "target": "audioldm.latent_diffusion.openaimodel.UNetModel",
         
     | 
| 144 | 
         
            +
                                "params": {
         
     | 
| 145 | 
         
            +
                                    "image_size": 64,
         
     | 
| 146 | 
         
            +
                                    "extra_film_condition_dim": 512,
         
     | 
| 147 | 
         
            +
                                    "extra_film_use_concat": True,
         
     | 
| 148 | 
         
            +
                                    "in_channels": 8,
         
     | 
| 149 | 
         
            +
                                    "out_channels": 8,
         
     | 
| 150 | 
         
            +
                                    "model_channels": 128,
         
     | 
| 151 | 
         
            +
                                    "attention_resolutions": [8, 4, 2],
         
     | 
| 152 | 
         
            +
                                    "num_res_blocks": 2,
         
     | 
| 153 | 
         
            +
                                    "channel_mult": [1, 2, 3, 5],
         
     | 
| 154 | 
         
            +
                                    "num_head_channels": 32,
         
     | 
| 155 | 
         
            +
                                    "use_spatial_transformer": True,
         
     | 
| 156 | 
         
            +
                                },
         
     | 
| 157 | 
         
            +
                            },
         
     | 
| 158 | 
         
            +
                            "first_stage_config": {
         
     | 
| 159 | 
         
            +
                                "base_learning_rate": 4.5e-05,
         
     | 
| 160 | 
         
            +
                                "target": "audioldm.variational_autoencoder.autoencoder.AutoencoderKL",
         
     | 
| 161 | 
         
            +
                                "params": {
         
     | 
| 162 | 
         
            +
                                    "monitor": "val/rec_loss",
         
     | 
| 163 | 
         
            +
                                    "image_key": "fbank",
         
     | 
| 164 | 
         
            +
                                    "subband": 1,
         
     | 
| 165 | 
         
            +
                                    "embed_dim": 8,
         
     | 
| 166 | 
         
            +
                                    "time_shuffle": 1,
         
     | 
| 167 | 
         
            +
                                    "ddconfig": {
         
     | 
| 168 | 
         
            +
                                        "double_z": True,
         
     | 
| 169 | 
         
            +
                                        "z_channels": 8,
         
     | 
| 170 | 
         
            +
                                        "resolution": 256,
         
     | 
| 171 | 
         
            +
                                        "downsample_time": False,
         
     | 
| 172 | 
         
            +
                                        "in_channels": 1,
         
     | 
| 173 | 
         
            +
                                        "out_ch": 1,
         
     | 
| 174 | 
         
            +
                                        "ch": 128,
         
     | 
| 175 | 
         
            +
                                        "ch_mult": [1, 2, 4],
         
     | 
| 176 | 
         
            +
                                        "num_res_blocks": 2,
         
     | 
| 177 | 
         
            +
                                        "attn_resolutions": [],
         
     | 
| 178 | 
         
            +
                                        "dropout": 0.0,
         
     | 
| 179 | 
         
            +
                                    },
         
     | 
| 180 | 
         
            +
                                },
         
     | 
| 181 | 
         
            +
                            },
         
     | 
| 182 | 
         
            +
                            "cond_stage_config": {
         
     | 
| 183 | 
         
            +
                                "target": "audioldm.clap.encoders.CLAPAudioEmbeddingClassifierFreev2",
         
     | 
| 184 | 
         
            +
                                "params": {
         
     | 
| 185 | 
         
            +
                                    "key": "waveform",
         
     | 
| 186 | 
         
            +
                                    "sampling_rate": 16000,
         
     | 
| 187 | 
         
            +
                                    "embed_mode": "audio",
         
     | 
| 188 | 
         
            +
                                    "unconditional_prob": 0.1,
         
     | 
| 189 | 
         
            +
                                },
         
     | 
| 190 | 
         
            +
                            },
         
     | 
| 191 | 
         
            +
                        },
         
     | 
| 192 | 
         
            +
                    },
         
     | 
| 193 | 
         
            +
                }
         
     | 
| 194 | 
         
            +
                
         
     | 
| 195 | 
         
            +
                if("-l-" in model_name):
         
     | 
| 196 | 
         
            +
                    basic_config["model"]["params"]["unet_config"]["params"]["model_channels"] = 256
         
     | 
| 197 | 
         
            +
                    basic_config["model"]["params"]["unet_config"]["params"]["num_head_channels"] = 64
         
     | 
| 198 | 
         
            +
                elif("-m-" in model_name):
         
     | 
| 199 | 
         
            +
                    basic_config["model"]["params"]["unet_config"]["params"]["model_channels"] = 192
         
     | 
| 200 | 
         
            +
                    basic_config["model"]["params"]["cond_stage_config"]["params"]["amodel"] = "HTSAT-base" # This model use a larger HTAST
         
     | 
| 201 | 
         
            +
                    
         
     | 
| 202 | 
         
            +
                return basic_config
         
     | 
| 203 | 
         
            +
                    
         
     | 
| 204 | 
         
            +
            def get_metadata():
         
     | 
| 205 | 
         
            +
                return {
         
     | 
| 206 | 
         
            +
                    "audioldm-s-full": {
         
     | 
| 207 | 
         
            +
                        "path": os.path.join(
         
     | 
| 208 | 
         
            +
                            CACHE_DIR,
         
     | 
| 209 | 
         
            +
                            "audioldm-s-full.ckpt",
         
     | 
| 210 | 
         
            +
                        ),
         
     | 
| 211 | 
         
            +
                        "url": "https://zenodo.org/record/7600541/files/audioldm-s-full?download=1",
         
     | 
| 212 | 
         
            +
                    },
         
     | 
| 213 | 
         
            +
                    "audioldm-l-full": {
         
     | 
| 214 | 
         
            +
                        "path": os.path.join(
         
     | 
| 215 | 
         
            +
                            CACHE_DIR,
         
     | 
| 216 | 
         
            +
                            "audioldm-l-full.ckpt",
         
     | 
| 217 | 
         
            +
                        ),
         
     | 
| 218 | 
         
            +
                        "url": "https://zenodo.org/record/7698295/files/audioldm-full-l.ckpt?download=1",
         
     | 
| 219 | 
         
            +
                    },
         
     | 
| 220 | 
         
            +
                    "audioldm-s-full-v2": {
         
     | 
| 221 | 
         
            +
                        "path": os.path.join(
         
     | 
| 222 | 
         
            +
                            CACHE_DIR,
         
     | 
| 223 | 
         
            +
                            "audioldm-s-full-v2.ckpt",
         
     | 
| 224 | 
         
            +
                        ),
         
     | 
| 225 | 
         
            +
                        "url": "https://zenodo.org/record/7698295/files/audioldm-full-s-v2.ckpt?download=1",
         
     | 
| 226 | 
         
            +
                    },
         
     | 
| 227 | 
         
            +
                    "audioldm-m-text-ft": {
         
     | 
| 228 | 
         
            +
                        "path": os.path.join(
         
     | 
| 229 | 
         
            +
                            CACHE_DIR,
         
     | 
| 230 | 
         
            +
                            "audioldm-m-text-ft.ckpt",
         
     | 
| 231 | 
         
            +
                        ),
         
     | 
| 232 | 
         
            +
                        "url": "https://zenodo.org/record/7813012/files/audioldm-m-text-ft.ckpt?download=1",
         
     | 
| 233 | 
         
            +
                    },
         
     | 
| 234 | 
         
            +
                    "audioldm-s-text-ft": {
         
     | 
| 235 | 
         
            +
                        "path": os.path.join(
         
     | 
| 236 | 
         
            +
                            CACHE_DIR,
         
     | 
| 237 | 
         
            +
                            "audioldm-s-text-ft.ckpt",
         
     | 
| 238 | 
         
            +
                        ),
         
     | 
| 239 | 
         
            +
                        "url": "https://zenodo.org/record/7813012/files/audioldm-s-text-ft.ckpt?download=1",
         
     | 
| 240 | 
         
            +
                    },
         
     | 
| 241 | 
         
            +
                    "audioldm-m-full": {
         
     | 
| 242 | 
         
            +
                        "path": os.path.join(
         
     | 
| 243 | 
         
            +
                            CACHE_DIR,
         
     | 
| 244 | 
         
            +
                            "audioldm-m-full.ckpt",
         
     | 
| 245 | 
         
            +
                        ),
         
     | 
| 246 | 
         
            +
                        "url": "https://zenodo.org/record/7813012/files/audioldm-m-full.ckpt?download=1",
         
     | 
| 247 | 
         
            +
                    },
         
     | 
| 248 | 
         
            +
                }
         
     | 
| 249 | 
         
            +
                
         
     | 
| 250 | 
         
            +
            class MyProgressBar():
         
     | 
| 251 | 
         
            +
                def __init__(self):
         
     | 
| 252 | 
         
            +
                    self.pbar = None
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                def __call__(self, block_num, block_size, total_size):
         
     | 
| 255 | 
         
            +
                    if not self.pbar:
         
     | 
| 256 | 
         
            +
                        self.pbar=progressbar.ProgressBar(maxval=total_size)
         
     | 
| 257 | 
         
            +
                        self.pbar.start()
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
                    downloaded = block_num * block_size
         
     | 
| 260 | 
         
            +
                    if downloaded < total_size:
         
     | 
| 261 | 
         
            +
                        self.pbar.update(downloaded)
         
     | 
| 262 | 
         
            +
                    else:
         
     | 
| 263 | 
         
            +
                        self.pbar.finish()
         
     | 
| 264 | 
         
            +
                        
         
     | 
| 265 | 
         
            +
            def download_checkpoint(checkpoint_name="audioldm-s-full"):
         
     | 
| 266 | 
         
            +
                meta = get_metadata()
         
     | 
| 267 | 
         
            +
                if(checkpoint_name not in meta.keys()):
         
     | 
| 268 | 
         
            +
                    print("The model name you provided is not supported. Please use one of the following: ", meta.keys())
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
                if not os.path.exists(meta[checkpoint_name]["path"]) or os.path.getsize(meta[checkpoint_name]["path"]) < 2*10**9:
         
     | 
| 271 | 
         
            +
                    os.makedirs(os.path.dirname(meta[checkpoint_name]["path"]), exist_ok=True)
         
     | 
| 272 | 
         
            +
                    print(f"Downloading the main structure of {checkpoint_name} into {os.path.dirname(meta[checkpoint_name]['path'])}")
         
     | 
| 273 | 
         
            +
             
     | 
| 274 | 
         
            +
                    urllib.request.urlretrieve(meta[checkpoint_name]["url"], meta[checkpoint_name]["path"], MyProgressBar())
         
     | 
| 275 | 
         
            +
                    print(
         
     | 
| 276 | 
         
            +
                        "Weights downloaded in: {} Size: {}".format(
         
     | 
| 277 | 
         
            +
                            meta[checkpoint_name]["path"],
         
     | 
| 278 | 
         
            +
                            os.path.getsize(meta[checkpoint_name]["path"]),
         
     | 
| 279 | 
         
            +
                        )
         
     | 
| 280 | 
         
            +
                    )
         
     | 
| 281 | 
         
            +
                
         
     | 
    	
        audioldm/variational_autoencoder/__init__.py
    ADDED
    
    | 
         @@ -0,0 +1 @@ 
     | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from .autoencoder import AutoencoderKL
         
     | 
    	
        audioldm/variational_autoencoder/__pycache__/__init__.cpython-39.pyc
    ADDED
    
    | 
         Binary file (220 Bytes). View file 
     | 
| 
         | 
    	
        audioldm/variational_autoencoder/__pycache__/autoencoder.cpython-39.pyc
    ADDED
    
    | 
         Binary file (4.37 kB). View file 
     | 
| 
         | 
    	
        audioldm/variational_autoencoder/__pycache__/distributions.cpython-39.pyc
    ADDED
    
    | 
         Binary file (3.78 kB). View file 
     | 
| 
         | 
    	
        audioldm/variational_autoencoder/__pycache__/modules.cpython-39.pyc
    ADDED
    
    | 
         Binary file (22.1 kB). View file 
     | 
| 
         | 
    	
        audioldm/variational_autoencoder/autoencoder.py
    ADDED
    
    | 
         @@ -0,0 +1,135 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from audioldm.latent_diffusion.ema import *
         
     | 
| 3 | 
         
            +
            from audioldm.variational_autoencoder.modules import Encoder, Decoder
         
     | 
| 4 | 
         
            +
            from audioldm.variational_autoencoder.distributions import DiagonalGaussianDistribution
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            from audioldm.hifigan.utilities import get_vocoder, vocoder_infer
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            class AutoencoderKL(nn.Module):
         
     | 
| 10 | 
         
            +
                def __init__(
         
     | 
| 11 | 
         
            +
                    self,
         
     | 
| 12 | 
         
            +
                    ddconfig=None,
         
     | 
| 13 | 
         
            +
                    lossconfig=None,
         
     | 
| 14 | 
         
            +
                    image_key="fbank",
         
     | 
| 15 | 
         
            +
                    embed_dim=None,
         
     | 
| 16 | 
         
            +
                    time_shuffle=1,
         
     | 
| 17 | 
         
            +
                    subband=1,
         
     | 
| 18 | 
         
            +
                    ckpt_path=None,
         
     | 
| 19 | 
         
            +
                    reload_from_ckpt=None,
         
     | 
| 20 | 
         
            +
                    ignore_keys=[],
         
     | 
| 21 | 
         
            +
                    colorize_nlabels=None,
         
     | 
| 22 | 
         
            +
                    monitor=None,
         
     | 
| 23 | 
         
            +
                    base_learning_rate=1e-5,
         
     | 
| 24 | 
         
            +
                    scale_factor=1
         
     | 
| 25 | 
         
            +
                ):
         
     | 
| 26 | 
         
            +
                    super().__init__()
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                    self.encoder = Encoder(**ddconfig)
         
     | 
| 29 | 
         
            +
                    self.decoder = Decoder(**ddconfig)
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                    self.subband = int(subband)
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                    if self.subband > 1:
         
     | 
| 34 | 
         
            +
                        print("Use subband decomposition %s" % self.subband)
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                    self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
         
     | 
| 37 | 
         
            +
                    self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
                    self.vocoder = get_vocoder(None, "cpu")
         
     | 
| 40 | 
         
            +
                    self.embed_dim = embed_dim
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                    if monitor is not None:
         
     | 
| 43 | 
         
            +
                        self.monitor = monitor
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                    self.time_shuffle = time_shuffle
         
     | 
| 46 | 
         
            +
                    self.reload_from_ckpt = reload_from_ckpt
         
     | 
| 47 | 
         
            +
                    self.reloaded = False
         
     | 
| 48 | 
         
            +
                    self.mean, self.std = None, None
         
     | 
| 49 | 
         
            +
                    
         
     | 
| 50 | 
         
            +
                    self.scale_factor = scale_factor
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                def encode(self, x):
         
     | 
| 53 | 
         
            +
                    # x = self.time_shuffle_operation(x)
         
     | 
| 54 | 
         
            +
                    x = self.freq_split_subband(x)
         
     | 
| 55 | 
         
            +
                    h = self.encoder(x)
         
     | 
| 56 | 
         
            +
                    moments = self.quant_conv(h)
         
     | 
| 57 | 
         
            +
                    posterior = DiagonalGaussianDistribution(moments)
         
     | 
| 58 | 
         
            +
                    return posterior
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                def decode(self, z):
         
     | 
| 61 | 
         
            +
                    z = self.post_quant_conv(z)
         
     | 
| 62 | 
         
            +
                    dec = self.decoder(z)
         
     | 
| 63 | 
         
            +
                    dec = self.freq_merge_subband(dec)
         
     | 
| 64 | 
         
            +
                    return dec
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                def decode_to_waveform(self, dec):
         
     | 
| 67 | 
         
            +
                    dec = dec.squeeze(1).permute(0, 2, 1)
         
     | 
| 68 | 
         
            +
                    wav_reconstruction = vocoder_infer(dec, self.vocoder)
         
     | 
| 69 | 
         
            +
                    return wav_reconstruction
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                def forward(self, input, sample_posterior=True):
         
     | 
| 72 | 
         
            +
                    posterior = self.encode(input)
         
     | 
| 73 | 
         
            +
                    if sample_posterior:
         
     | 
| 74 | 
         
            +
                        z = posterior.sample()
         
     | 
| 75 | 
         
            +
                    else:
         
     | 
| 76 | 
         
            +
                        z = posterior.mode()
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                    if self.flag_first_run:
         
     | 
| 79 | 
         
            +
                        print("Latent size: ", z.size())
         
     | 
| 80 | 
         
            +
                        self.flag_first_run = False
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                    dec = self.decode(z)
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                    return dec, posterior
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
                def freq_split_subband(self, fbank):
         
     | 
| 87 | 
         
            +
                    if self.subband == 1 or self.image_key != "stft":
         
     | 
| 88 | 
         
            +
                        return fbank
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                    bs, ch, tstep, fbins = fbank.size()
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                    assert fbank.size(-1) % self.subband == 0
         
     | 
| 93 | 
         
            +
                    assert ch == 1
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                    return (
         
     | 
| 96 | 
         
            +
                        fbank.squeeze(1)
         
     | 
| 97 | 
         
            +
                        .reshape(bs, tstep, self.subband, fbins // self.subband)
         
     | 
| 98 | 
         
            +
                        .permute(0, 2, 1, 3)
         
     | 
| 99 | 
         
            +
                    )
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                def freq_merge_subband(self, subband_fbank):
         
     | 
| 102 | 
         
            +
                    if self.subband == 1 or self.image_key != "stft":
         
     | 
| 103 | 
         
            +
                        return subband_fbank
         
     | 
| 104 | 
         
            +
                    assert subband_fbank.size(1) == self.subband  # Channel dimension
         
     | 
| 105 | 
         
            +
                    bs, sub_ch, tstep, fbins = subband_fbank.size()
         
     | 
| 106 | 
         
            +
                    return subband_fbank.permute(0, 2, 1, 3).reshape(bs, tstep, -1).unsqueeze(1)
         
     | 
| 107 | 
         
            +
                
         
     | 
| 108 | 
         
            +
                def device(self):
         
     | 
| 109 | 
         
            +
                    return next(self.parameters()).device
         
     | 
| 110 | 
         
            +
                
         
     | 
| 111 | 
         
            +
                @torch.no_grad()
         
     | 
| 112 | 
         
            +
                def encode_first_stage(self, x):
         
     | 
| 113 | 
         
            +
                    return self.encode(x)
         
     | 
| 114 | 
         
            +
                
         
     | 
| 115 | 
         
            +
                @torch.no_grad()
         
     | 
| 116 | 
         
            +
                def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
         
     | 
| 117 | 
         
            +
                    if predict_cids:
         
     | 
| 118 | 
         
            +
                        if z.dim() == 4:
         
     | 
| 119 | 
         
            +
                            z = torch.argmax(z.exp(), dim=1).long()
         
     | 
| 120 | 
         
            +
                        z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
         
     | 
| 121 | 
         
            +
                        z = rearrange(z, "b h w c -> b c h w").contiguous()
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                    z = 1.0 / self.scale_factor * z
         
     | 
| 124 | 
         
            +
                    return self.decode(z)
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                def get_first_stage_encoding(self, encoder_posterior):
         
     | 
| 127 | 
         
            +
                    if isinstance(encoder_posterior, DiagonalGaussianDistribution):
         
     | 
| 128 | 
         
            +
                        z = encoder_posterior.sample()
         
     | 
| 129 | 
         
            +
                    elif isinstance(encoder_posterior, torch.Tensor):
         
     | 
| 130 | 
         
            +
                        z = encoder_posterior
         
     | 
| 131 | 
         
            +
                    else:
         
     | 
| 132 | 
         
            +
                        raise NotImplementedError(
         
     | 
| 133 | 
         
            +
                            f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
         
     | 
| 134 | 
         
            +
                        )
         
     | 
| 135 | 
         
            +
                    return self.scale_factor * z
         
     | 
    	
        audioldm/variational_autoencoder/distributions.py
    ADDED
    
    | 
         @@ -0,0 +1,102 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import numpy as np
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            class AbstractDistribution:
         
     | 
| 6 | 
         
            +
                def sample(self):
         
     | 
| 7 | 
         
            +
                    raise NotImplementedError()
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
                def mode(self):
         
     | 
| 10 | 
         
            +
                    raise NotImplementedError()
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            class DiracDistribution(AbstractDistribution):
         
     | 
| 14 | 
         
            +
                def __init__(self, value):
         
     | 
| 15 | 
         
            +
                    self.value = value
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
                def sample(self):
         
     | 
| 18 | 
         
            +
                    return self.value
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
                def mode(self):
         
     | 
| 21 | 
         
            +
                    return self.value
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            class DiagonalGaussianDistribution(object):
         
     | 
| 25 | 
         
            +
                def __init__(self, parameters, deterministic=False):
         
     | 
| 26 | 
         
            +
                    self.parameters = parameters
         
     | 
| 27 | 
         
            +
                    self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
         
     | 
| 28 | 
         
            +
                    self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
         
     | 
| 29 | 
         
            +
                    self.deterministic = deterministic
         
     | 
| 30 | 
         
            +
                    self.std = torch.exp(0.5 * self.logvar)
         
     | 
| 31 | 
         
            +
                    self.var = torch.exp(self.logvar)
         
     | 
| 32 | 
         
            +
                    if self.deterministic:
         
     | 
| 33 | 
         
            +
                        self.var = self.std = torch.zeros_like(self.mean).to(
         
     | 
| 34 | 
         
            +
                            device=self.parameters.device
         
     | 
| 35 | 
         
            +
                        )
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                def sample(self):
         
     | 
| 38 | 
         
            +
                    x = self.mean + self.std * torch.randn(self.mean.shape).to(
         
     | 
| 39 | 
         
            +
                        device=self.parameters.device
         
     | 
| 40 | 
         
            +
                    )
         
     | 
| 41 | 
         
            +
                    return x
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                def kl(self, other=None):
         
     | 
| 44 | 
         
            +
                    if self.deterministic:
         
     | 
| 45 | 
         
            +
                        return torch.Tensor([0.0])
         
     | 
| 46 | 
         
            +
                    else:
         
     | 
| 47 | 
         
            +
                        if other is None:
         
     | 
| 48 | 
         
            +
                            return 0.5 * torch.mean(
         
     | 
| 49 | 
         
            +
                                torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
         
     | 
| 50 | 
         
            +
                                dim=[1, 2, 3],
         
     | 
| 51 | 
         
            +
                            )
         
     | 
| 52 | 
         
            +
                        else:
         
     | 
| 53 | 
         
            +
                            return 0.5 * torch.mean(
         
     | 
| 54 | 
         
            +
                                torch.pow(self.mean - other.mean, 2) / other.var
         
     | 
| 55 | 
         
            +
                                + self.var / other.var
         
     | 
| 56 | 
         
            +
                                - 1.0
         
     | 
| 57 | 
         
            +
                                - self.logvar
         
     | 
| 58 | 
         
            +
                                + other.logvar,
         
     | 
| 59 | 
         
            +
                                dim=[1, 2, 3],
         
     | 
| 60 | 
         
            +
                            )
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                def nll(self, sample, dims=[1, 2, 3]):
         
     | 
| 63 | 
         
            +
                    if self.deterministic:
         
     | 
| 64 | 
         
            +
                        return torch.Tensor([0.0])
         
     | 
| 65 | 
         
            +
                    logtwopi = np.log(2.0 * np.pi)
         
     | 
| 66 | 
         
            +
                    return 0.5 * torch.sum(
         
     | 
| 67 | 
         
            +
                        logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
         
     | 
| 68 | 
         
            +
                        dim=dims,
         
     | 
| 69 | 
         
            +
                    )
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                def mode(self):
         
     | 
| 72 | 
         
            +
                    return self.mean
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
            def normal_kl(mean1, logvar1, mean2, logvar2):
         
     | 
| 76 | 
         
            +
                """
         
     | 
| 77 | 
         
            +
                source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
         
     | 
| 78 | 
         
            +
                Compute the KL divergence between two gaussians.
         
     | 
| 79 | 
         
            +
                Shapes are automatically broadcasted, so batches can be compared to
         
     | 
| 80 | 
         
            +
                scalars, among other use cases.
         
     | 
| 81 | 
         
            +
                """
         
     | 
| 82 | 
         
            +
                tensor = None
         
     | 
| 83 | 
         
            +
                for obj in (mean1, logvar1, mean2, logvar2):
         
     | 
| 84 | 
         
            +
                    if isinstance(obj, torch.Tensor):
         
     | 
| 85 | 
         
            +
                        tensor = obj
         
     | 
| 86 | 
         
            +
                        break
         
     | 
| 87 | 
         
            +
                assert tensor is not None, "at least one argument must be a Tensor"
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                # Force variances to be Tensors. Broadcasting helps convert scalars to
         
     | 
| 90 | 
         
            +
                # Tensors, but it does not work for torch.exp().
         
     | 
| 91 | 
         
            +
                logvar1, logvar2 = [
         
     | 
| 92 | 
         
            +
                    x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
         
     | 
| 93 | 
         
            +
                    for x in (logvar1, logvar2)
         
     | 
| 94 | 
         
            +
                ]
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                return 0.5 * (
         
     | 
| 97 | 
         
            +
                    -1.0
         
     | 
| 98 | 
         
            +
                    + logvar2
         
     | 
| 99 | 
         
            +
                    - logvar1
         
     | 
| 100 | 
         
            +
                    + torch.exp(logvar1 - logvar2)
         
     | 
| 101 | 
         
            +
                    + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
         
     | 
| 102 | 
         
            +
                )
         
     | 
    	
        audioldm/variational_autoencoder/modules.py
    ADDED
    
    | 
         @@ -0,0 +1,1066 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # pytorch_diffusion + derived encoder decoder
         
     | 
| 2 | 
         
            +
            import math
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import torch.nn as nn
         
     | 
| 5 | 
         
            +
            import numpy as np
         
     | 
| 6 | 
         
            +
            from einops import rearrange
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from audioldm.utils import instantiate_from_config
         
     | 
| 9 | 
         
            +
            from audioldm.latent_diffusion.attention import LinearAttention
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            def get_timestep_embedding(timesteps, embedding_dim):
         
     | 
| 13 | 
         
            +
                """
         
     | 
| 14 | 
         
            +
                This matches the implementation in Denoising Diffusion Probabilistic Models:
         
     | 
| 15 | 
         
            +
                From Fairseq.
         
     | 
| 16 | 
         
            +
                Build sinusoidal embeddings.
         
     | 
| 17 | 
         
            +
                This matches the implementation in tensor2tensor, but differs slightly
         
     | 
| 18 | 
         
            +
                from the description in Section 3.5 of "Attention Is All You Need".
         
     | 
| 19 | 
         
            +
                """
         
     | 
| 20 | 
         
            +
                assert len(timesteps.shape) == 1
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
                half_dim = embedding_dim // 2
         
     | 
| 23 | 
         
            +
                emb = math.log(10000) / (half_dim - 1)
         
     | 
| 24 | 
         
            +
                emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
         
     | 
| 25 | 
         
            +
                emb = emb.to(device=timesteps.device)
         
     | 
| 26 | 
         
            +
                emb = timesteps.float()[:, None] * emb[None, :]
         
     | 
| 27 | 
         
            +
                emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
         
     | 
| 28 | 
         
            +
                if embedding_dim % 2 == 1:  # zero pad
         
     | 
| 29 | 
         
            +
                    emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
         
     | 
| 30 | 
         
            +
                return emb
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            def nonlinearity(x):
         
     | 
| 34 | 
         
            +
                # swish
         
     | 
| 35 | 
         
            +
                return x * torch.sigmoid(x)
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            def Normalize(in_channels, num_groups=32):
         
     | 
| 39 | 
         
            +
                return torch.nn.GroupNorm(
         
     | 
| 40 | 
         
            +
                    num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
         
     | 
| 41 | 
         
            +
                )
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            class Upsample(nn.Module):
         
     | 
| 45 | 
         
            +
                def __init__(self, in_channels, with_conv):
         
     | 
| 46 | 
         
            +
                    super().__init__()
         
     | 
| 47 | 
         
            +
                    self.with_conv = with_conv
         
     | 
| 48 | 
         
            +
                    if self.with_conv:
         
     | 
| 49 | 
         
            +
                        self.conv = torch.nn.Conv2d(
         
     | 
| 50 | 
         
            +
                            in_channels, in_channels, kernel_size=3, stride=1, padding=1
         
     | 
| 51 | 
         
            +
                        )
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                def forward(self, x):
         
     | 
| 54 | 
         
            +
                    x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
         
     | 
| 55 | 
         
            +
                    if self.with_conv:
         
     | 
| 56 | 
         
            +
                        x = self.conv(x)
         
     | 
| 57 | 
         
            +
                    return x
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
            class UpsampleTimeStride4(nn.Module):
         
     | 
| 61 | 
         
            +
                def __init__(self, in_channels, with_conv):
         
     | 
| 62 | 
         
            +
                    super().__init__()
         
     | 
| 63 | 
         
            +
                    self.with_conv = with_conv
         
     | 
| 64 | 
         
            +
                    if self.with_conv:
         
     | 
| 65 | 
         
            +
                        self.conv = torch.nn.Conv2d(
         
     | 
| 66 | 
         
            +
                            in_channels, in_channels, kernel_size=5, stride=1, padding=2
         
     | 
| 67 | 
         
            +
                        )
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                def forward(self, x):
         
     | 
| 70 | 
         
            +
                    x = torch.nn.functional.interpolate(x, scale_factor=(4.0, 2.0), mode="nearest")
         
     | 
| 71 | 
         
            +
                    if self.with_conv:
         
     | 
| 72 | 
         
            +
                        x = self.conv(x)
         
     | 
| 73 | 
         
            +
                    return x
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
            class Downsample(nn.Module):
         
     | 
| 77 | 
         
            +
                def __init__(self, in_channels, with_conv):
         
     | 
| 78 | 
         
            +
                    super().__init__()
         
     | 
| 79 | 
         
            +
                    self.with_conv = with_conv
         
     | 
| 80 | 
         
            +
                    if self.with_conv:
         
     | 
| 81 | 
         
            +
                        # Do time downsampling here
         
     | 
| 82 | 
         
            +
                        # no asymmetric padding in torch conv, must do it ourselves
         
     | 
| 83 | 
         
            +
                        self.conv = torch.nn.Conv2d(
         
     | 
| 84 | 
         
            +
                            in_channels, in_channels, kernel_size=3, stride=2, padding=0
         
     | 
| 85 | 
         
            +
                        )
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                def forward(self, x):
         
     | 
| 88 | 
         
            +
                    if self.with_conv:
         
     | 
| 89 | 
         
            +
                        pad = (0, 1, 0, 1)
         
     | 
| 90 | 
         
            +
                        x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
         
     | 
| 91 | 
         
            +
                        x = self.conv(x)
         
     | 
| 92 | 
         
            +
                    else:
         
     | 
| 93 | 
         
            +
                        x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
         
     | 
| 94 | 
         
            +
                    return x
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
            class DownsampleTimeStride4(nn.Module):
         
     | 
| 98 | 
         
            +
                def __init__(self, in_channels, with_conv):
         
     | 
| 99 | 
         
            +
                    super().__init__()
         
     | 
| 100 | 
         
            +
                    self.with_conv = with_conv
         
     | 
| 101 | 
         
            +
                    if self.with_conv:
         
     | 
| 102 | 
         
            +
                        # Do time downsampling here
         
     | 
| 103 | 
         
            +
                        # no asymmetric padding in torch conv, must do it ourselves
         
     | 
| 104 | 
         
            +
                        self.conv = torch.nn.Conv2d(
         
     | 
| 105 | 
         
            +
                            in_channels, in_channels, kernel_size=5, stride=(4, 2), padding=1
         
     | 
| 106 | 
         
            +
                        )
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                def forward(self, x):
         
     | 
| 109 | 
         
            +
                    if self.with_conv:
         
     | 
| 110 | 
         
            +
                        pad = (0, 1, 0, 1)
         
     | 
| 111 | 
         
            +
                        x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
         
     | 
| 112 | 
         
            +
                        x = self.conv(x)
         
     | 
| 113 | 
         
            +
                    else:
         
     | 
| 114 | 
         
            +
                        x = torch.nn.functional.avg_pool2d(x, kernel_size=(4, 2), stride=(4, 2))
         
     | 
| 115 | 
         
            +
                    return x
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
            class ResnetBlock(nn.Module):
         
     | 
| 119 | 
         
            +
                def __init__(
         
     | 
| 120 | 
         
            +
                    self,
         
     | 
| 121 | 
         
            +
                    *,
         
     | 
| 122 | 
         
            +
                    in_channels,
         
     | 
| 123 | 
         
            +
                    out_channels=None,
         
     | 
| 124 | 
         
            +
                    conv_shortcut=False,
         
     | 
| 125 | 
         
            +
                    dropout,
         
     | 
| 126 | 
         
            +
                    temb_channels=512,
         
     | 
| 127 | 
         
            +
                ):
         
     | 
| 128 | 
         
            +
                    super().__init__()
         
     | 
| 129 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 130 | 
         
            +
                    out_channels = in_channels if out_channels is None else out_channels
         
     | 
| 131 | 
         
            +
                    self.out_channels = out_channels
         
     | 
| 132 | 
         
            +
                    self.use_conv_shortcut = conv_shortcut
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                    self.norm1 = Normalize(in_channels)
         
     | 
| 135 | 
         
            +
                    self.conv1 = torch.nn.Conv2d(
         
     | 
| 136 | 
         
            +
                        in_channels, out_channels, kernel_size=3, stride=1, padding=1
         
     | 
| 137 | 
         
            +
                    )
         
     | 
| 138 | 
         
            +
                    if temb_channels > 0:
         
     | 
| 139 | 
         
            +
                        self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
         
     | 
| 140 | 
         
            +
                    self.norm2 = Normalize(out_channels)
         
     | 
| 141 | 
         
            +
                    self.dropout = torch.nn.Dropout(dropout)
         
     | 
| 142 | 
         
            +
                    self.conv2 = torch.nn.Conv2d(
         
     | 
| 143 | 
         
            +
                        out_channels, out_channels, kernel_size=3, stride=1, padding=1
         
     | 
| 144 | 
         
            +
                    )
         
     | 
| 145 | 
         
            +
                    if self.in_channels != self.out_channels:
         
     | 
| 146 | 
         
            +
                        if self.use_conv_shortcut:
         
     | 
| 147 | 
         
            +
                            self.conv_shortcut = torch.nn.Conv2d(
         
     | 
| 148 | 
         
            +
                                in_channels, out_channels, kernel_size=3, stride=1, padding=1
         
     | 
| 149 | 
         
            +
                            )
         
     | 
| 150 | 
         
            +
                        else:
         
     | 
| 151 | 
         
            +
                            self.nin_shortcut = torch.nn.Conv2d(
         
     | 
| 152 | 
         
            +
                                in_channels, out_channels, kernel_size=1, stride=1, padding=0
         
     | 
| 153 | 
         
            +
                            )
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                def forward(self, x, temb):
         
     | 
| 156 | 
         
            +
                    h = x
         
     | 
| 157 | 
         
            +
                    h = self.norm1(h)
         
     | 
| 158 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 159 | 
         
            +
                    h = self.conv1(h)
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                    if temb is not None:
         
     | 
| 162 | 
         
            +
                        h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                    h = self.norm2(h)
         
     | 
| 165 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 166 | 
         
            +
                    h = self.dropout(h)
         
     | 
| 167 | 
         
            +
                    h = self.conv2(h)
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
                    if self.in_channels != self.out_channels:
         
     | 
| 170 | 
         
            +
                        if self.use_conv_shortcut:
         
     | 
| 171 | 
         
            +
                            x = self.conv_shortcut(x)
         
     | 
| 172 | 
         
            +
                        else:
         
     | 
| 173 | 
         
            +
                            x = self.nin_shortcut(x)
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                    return x + h
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
            class LinAttnBlock(LinearAttention):
         
     | 
| 179 | 
         
            +
                """to match AttnBlock usage"""
         
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
                def __init__(self, in_channels):
         
     | 
| 182 | 
         
            +
                    super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
            class AttnBlock(nn.Module):
         
     | 
| 186 | 
         
            +
                def __init__(self, in_channels):
         
     | 
| 187 | 
         
            +
                    super().__init__()
         
     | 
| 188 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
                    self.norm = Normalize(in_channels)
         
     | 
| 191 | 
         
            +
                    self.q = torch.nn.Conv2d(
         
     | 
| 192 | 
         
            +
                        in_channels, in_channels, kernel_size=1, stride=1, padding=0
         
     | 
| 193 | 
         
            +
                    )
         
     | 
| 194 | 
         
            +
                    self.k = torch.nn.Conv2d(
         
     | 
| 195 | 
         
            +
                        in_channels, in_channels, kernel_size=1, stride=1, padding=0
         
     | 
| 196 | 
         
            +
                    )
         
     | 
| 197 | 
         
            +
                    self.v = torch.nn.Conv2d(
         
     | 
| 198 | 
         
            +
                        in_channels, in_channels, kernel_size=1, stride=1, padding=0
         
     | 
| 199 | 
         
            +
                    )
         
     | 
| 200 | 
         
            +
                    self.proj_out = torch.nn.Conv2d(
         
     | 
| 201 | 
         
            +
                        in_channels, in_channels, kernel_size=1, stride=1, padding=0
         
     | 
| 202 | 
         
            +
                    )
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                def forward(self, x):
         
     | 
| 205 | 
         
            +
                    h_ = x
         
     | 
| 206 | 
         
            +
                    h_ = self.norm(h_)
         
     | 
| 207 | 
         
            +
                    q = self.q(h_)
         
     | 
| 208 | 
         
            +
                    k = self.k(h_)
         
     | 
| 209 | 
         
            +
                    v = self.v(h_)
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
                    # compute attention
         
     | 
| 212 | 
         
            +
                    b, c, h, w = q.shape
         
     | 
| 213 | 
         
            +
                    q = q.reshape(b, c, h * w).contiguous()
         
     | 
| 214 | 
         
            +
                    q = q.permute(0, 2, 1).contiguous()  # b,hw,c
         
     | 
| 215 | 
         
            +
                    k = k.reshape(b, c, h * w).contiguous()  # b,c,hw
         
     | 
| 216 | 
         
            +
                    w_ = torch.bmm(q, k).contiguous()  # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
         
     | 
| 217 | 
         
            +
                    w_ = w_ * (int(c) ** (-0.5))
         
     | 
| 218 | 
         
            +
                    w_ = torch.nn.functional.softmax(w_, dim=2)
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
                    # attend to values
         
     | 
| 221 | 
         
            +
                    v = v.reshape(b, c, h * w).contiguous()
         
     | 
| 222 | 
         
            +
                    w_ = w_.permute(0, 2, 1).contiguous()  # b,hw,hw (first hw of k, second of q)
         
     | 
| 223 | 
         
            +
                    h_ = torch.bmm(
         
     | 
| 224 | 
         
            +
                        v, w_
         
     | 
| 225 | 
         
            +
                    ).contiguous()  # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
         
     | 
| 226 | 
         
            +
                    h_ = h_.reshape(b, c, h, w).contiguous()
         
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
                    h_ = self.proj_out(h_)
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                    return x + h_
         
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
            def make_attn(in_channels, attn_type="vanilla"):
         
     | 
| 234 | 
         
            +
                assert attn_type in ["vanilla", "linear", "none"], f"attn_type {attn_type} unknown"
         
     | 
| 235 | 
         
            +
                # print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
         
     | 
| 236 | 
         
            +
                if attn_type == "vanilla":
         
     | 
| 237 | 
         
            +
                    return AttnBlock(in_channels)
         
     | 
| 238 | 
         
            +
                elif attn_type == "none":
         
     | 
| 239 | 
         
            +
                    return nn.Identity(in_channels)
         
     | 
| 240 | 
         
            +
                else:
         
     | 
| 241 | 
         
            +
                    return LinAttnBlock(in_channels)
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
            class Model(nn.Module):
         
     | 
| 245 | 
         
            +
                def __init__(
         
     | 
| 246 | 
         
            +
                    self,
         
     | 
| 247 | 
         
            +
                    *,
         
     | 
| 248 | 
         
            +
                    ch,
         
     | 
| 249 | 
         
            +
                    out_ch,
         
     | 
| 250 | 
         
            +
                    ch_mult=(1, 2, 4, 8),
         
     | 
| 251 | 
         
            +
                    num_res_blocks,
         
     | 
| 252 | 
         
            +
                    attn_resolutions,
         
     | 
| 253 | 
         
            +
                    dropout=0.0,
         
     | 
| 254 | 
         
            +
                    resamp_with_conv=True,
         
     | 
| 255 | 
         
            +
                    in_channels,
         
     | 
| 256 | 
         
            +
                    resolution,
         
     | 
| 257 | 
         
            +
                    use_timestep=True,
         
     | 
| 258 | 
         
            +
                    use_linear_attn=False,
         
     | 
| 259 | 
         
            +
                    attn_type="vanilla",
         
     | 
| 260 | 
         
            +
                ):
         
     | 
| 261 | 
         
            +
                    super().__init__()
         
     | 
| 262 | 
         
            +
                    if use_linear_attn:
         
     | 
| 263 | 
         
            +
                        attn_type = "linear"
         
     | 
| 264 | 
         
            +
                    self.ch = ch
         
     | 
| 265 | 
         
            +
                    self.temb_ch = self.ch * 4
         
     | 
| 266 | 
         
            +
                    self.num_resolutions = len(ch_mult)
         
     | 
| 267 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 268 | 
         
            +
                    self.resolution = resolution
         
     | 
| 269 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 270 | 
         
            +
             
     | 
| 271 | 
         
            +
                    self.use_timestep = use_timestep
         
     | 
| 272 | 
         
            +
                    if self.use_timestep:
         
     | 
| 273 | 
         
            +
                        # timestep embedding
         
     | 
| 274 | 
         
            +
                        self.temb = nn.Module()
         
     | 
| 275 | 
         
            +
                        self.temb.dense = nn.ModuleList(
         
     | 
| 276 | 
         
            +
                            [
         
     | 
| 277 | 
         
            +
                                torch.nn.Linear(self.ch, self.temb_ch),
         
     | 
| 278 | 
         
            +
                                torch.nn.Linear(self.temb_ch, self.temb_ch),
         
     | 
| 279 | 
         
            +
                            ]
         
     | 
| 280 | 
         
            +
                        )
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                    # downsampling
         
     | 
| 283 | 
         
            +
                    self.conv_in = torch.nn.Conv2d(
         
     | 
| 284 | 
         
            +
                        in_channels, self.ch, kernel_size=3, stride=1, padding=1
         
     | 
| 285 | 
         
            +
                    )
         
     | 
| 286 | 
         
            +
             
     | 
| 287 | 
         
            +
                    curr_res = resolution
         
     | 
| 288 | 
         
            +
                    in_ch_mult = (1,) + tuple(ch_mult)
         
     | 
| 289 | 
         
            +
                    self.down = nn.ModuleList()
         
     | 
| 290 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 291 | 
         
            +
                        block = nn.ModuleList()
         
     | 
| 292 | 
         
            +
                        attn = nn.ModuleList()
         
     | 
| 293 | 
         
            +
                        block_in = ch * in_ch_mult[i_level]
         
     | 
| 294 | 
         
            +
                        block_out = ch * ch_mult[i_level]
         
     | 
| 295 | 
         
            +
                        for i_block in range(self.num_res_blocks):
         
     | 
| 296 | 
         
            +
                            block.append(
         
     | 
| 297 | 
         
            +
                                ResnetBlock(
         
     | 
| 298 | 
         
            +
                                    in_channels=block_in,
         
     | 
| 299 | 
         
            +
                                    out_channels=block_out,
         
     | 
| 300 | 
         
            +
                                    temb_channels=self.temb_ch,
         
     | 
| 301 | 
         
            +
                                    dropout=dropout,
         
     | 
| 302 | 
         
            +
                                )
         
     | 
| 303 | 
         
            +
                            )
         
     | 
| 304 | 
         
            +
                            block_in = block_out
         
     | 
| 305 | 
         
            +
                            if curr_res in attn_resolutions:
         
     | 
| 306 | 
         
            +
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 307 | 
         
            +
                        down = nn.Module()
         
     | 
| 308 | 
         
            +
                        down.block = block
         
     | 
| 309 | 
         
            +
                        down.attn = attn
         
     | 
| 310 | 
         
            +
                        if i_level != self.num_resolutions - 1:
         
     | 
| 311 | 
         
            +
                            down.downsample = Downsample(block_in, resamp_with_conv)
         
     | 
| 312 | 
         
            +
                            curr_res = curr_res // 2
         
     | 
| 313 | 
         
            +
                        self.down.append(down)
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                    # middle
         
     | 
| 316 | 
         
            +
                    self.mid = nn.Module()
         
     | 
| 317 | 
         
            +
                    self.mid.block_1 = ResnetBlock(
         
     | 
| 318 | 
         
            +
                        in_channels=block_in,
         
     | 
| 319 | 
         
            +
                        out_channels=block_in,
         
     | 
| 320 | 
         
            +
                        temb_channels=self.temb_ch,
         
     | 
| 321 | 
         
            +
                        dropout=dropout,
         
     | 
| 322 | 
         
            +
                    )
         
     | 
| 323 | 
         
            +
                    self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
         
     | 
| 324 | 
         
            +
                    self.mid.block_2 = ResnetBlock(
         
     | 
| 325 | 
         
            +
                        in_channels=block_in,
         
     | 
| 326 | 
         
            +
                        out_channels=block_in,
         
     | 
| 327 | 
         
            +
                        temb_channels=self.temb_ch,
         
     | 
| 328 | 
         
            +
                        dropout=dropout,
         
     | 
| 329 | 
         
            +
                    )
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                    # upsampling
         
     | 
| 332 | 
         
            +
                    self.up = nn.ModuleList()
         
     | 
| 333 | 
         
            +
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 334 | 
         
            +
                        block = nn.ModuleList()
         
     | 
| 335 | 
         
            +
                        attn = nn.ModuleList()
         
     | 
| 336 | 
         
            +
                        block_out = ch * ch_mult[i_level]
         
     | 
| 337 | 
         
            +
                        skip_in = ch * ch_mult[i_level]
         
     | 
| 338 | 
         
            +
                        for i_block in range(self.num_res_blocks + 1):
         
     | 
| 339 | 
         
            +
                            if i_block == self.num_res_blocks:
         
     | 
| 340 | 
         
            +
                                skip_in = ch * in_ch_mult[i_level]
         
     | 
| 341 | 
         
            +
                            block.append(
         
     | 
| 342 | 
         
            +
                                ResnetBlock(
         
     | 
| 343 | 
         
            +
                                    in_channels=block_in + skip_in,
         
     | 
| 344 | 
         
            +
                                    out_channels=block_out,
         
     | 
| 345 | 
         
            +
                                    temb_channels=self.temb_ch,
         
     | 
| 346 | 
         
            +
                                    dropout=dropout,
         
     | 
| 347 | 
         
            +
                                )
         
     | 
| 348 | 
         
            +
                            )
         
     | 
| 349 | 
         
            +
                            block_in = block_out
         
     | 
| 350 | 
         
            +
                            if curr_res in attn_resolutions:
         
     | 
| 351 | 
         
            +
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 352 | 
         
            +
                        up = nn.Module()
         
     | 
| 353 | 
         
            +
                        up.block = block
         
     | 
| 354 | 
         
            +
                        up.attn = attn
         
     | 
| 355 | 
         
            +
                        if i_level != 0:
         
     | 
| 356 | 
         
            +
                            up.upsample = Upsample(block_in, resamp_with_conv)
         
     | 
| 357 | 
         
            +
                            curr_res = curr_res * 2
         
     | 
| 358 | 
         
            +
                        self.up.insert(0, up)  # prepend to get consistent order
         
     | 
| 359 | 
         
            +
             
     | 
| 360 | 
         
            +
                    # end
         
     | 
| 361 | 
         
            +
                    self.norm_out = Normalize(block_in)
         
     | 
| 362 | 
         
            +
                    self.conv_out = torch.nn.Conv2d(
         
     | 
| 363 | 
         
            +
                        block_in, out_ch, kernel_size=3, stride=1, padding=1
         
     | 
| 364 | 
         
            +
                    )
         
     | 
| 365 | 
         
            +
             
     | 
| 366 | 
         
            +
                def forward(self, x, t=None, context=None):
         
     | 
| 367 | 
         
            +
                    # assert x.shape[2] == x.shape[3] == self.resolution
         
     | 
| 368 | 
         
            +
                    if context is not None:
         
     | 
| 369 | 
         
            +
                        # assume aligned context, cat along channel axis
         
     | 
| 370 | 
         
            +
                        x = torch.cat((x, context), dim=1)
         
     | 
| 371 | 
         
            +
                    if self.use_timestep:
         
     | 
| 372 | 
         
            +
                        # timestep embedding
         
     | 
| 373 | 
         
            +
                        assert t is not None
         
     | 
| 374 | 
         
            +
                        temb = get_timestep_embedding(t, self.ch)
         
     | 
| 375 | 
         
            +
                        temb = self.temb.dense[0](temb)
         
     | 
| 376 | 
         
            +
                        temb = nonlinearity(temb)
         
     | 
| 377 | 
         
            +
                        temb = self.temb.dense[1](temb)
         
     | 
| 378 | 
         
            +
                    else:
         
     | 
| 379 | 
         
            +
                        temb = None
         
     | 
| 380 | 
         
            +
             
     | 
| 381 | 
         
            +
                    # downsampling
         
     | 
| 382 | 
         
            +
                    hs = [self.conv_in(x)]
         
     | 
| 383 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 384 | 
         
            +
                        for i_block in range(self.num_res_blocks):
         
     | 
| 385 | 
         
            +
                            h = self.down[i_level].block[i_block](hs[-1], temb)
         
     | 
| 386 | 
         
            +
                            if len(self.down[i_level].attn) > 0:
         
     | 
| 387 | 
         
            +
                                h = self.down[i_level].attn[i_block](h)
         
     | 
| 388 | 
         
            +
                            hs.append(h)
         
     | 
| 389 | 
         
            +
                        if i_level != self.num_resolutions - 1:
         
     | 
| 390 | 
         
            +
                            hs.append(self.down[i_level].downsample(hs[-1]))
         
     | 
| 391 | 
         
            +
             
     | 
| 392 | 
         
            +
                    # middle
         
     | 
| 393 | 
         
            +
                    h = hs[-1]
         
     | 
| 394 | 
         
            +
                    h = self.mid.block_1(h, temb)
         
     | 
| 395 | 
         
            +
                    h = self.mid.attn_1(h)
         
     | 
| 396 | 
         
            +
                    h = self.mid.block_2(h, temb)
         
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
                    # upsampling
         
     | 
| 399 | 
         
            +
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 400 | 
         
            +
                        for i_block in range(self.num_res_blocks + 1):
         
     | 
| 401 | 
         
            +
                            h = self.up[i_level].block[i_block](
         
     | 
| 402 | 
         
            +
                                torch.cat([h, hs.pop()], dim=1), temb
         
     | 
| 403 | 
         
            +
                            )
         
     | 
| 404 | 
         
            +
                            if len(self.up[i_level].attn) > 0:
         
     | 
| 405 | 
         
            +
                                h = self.up[i_level].attn[i_block](h)
         
     | 
| 406 | 
         
            +
                        if i_level != 0:
         
     | 
| 407 | 
         
            +
                            h = self.up[i_level].upsample(h)
         
     | 
| 408 | 
         
            +
             
     | 
| 409 | 
         
            +
                    # end
         
     | 
| 410 | 
         
            +
                    h = self.norm_out(h)
         
     | 
| 411 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 412 | 
         
            +
                    h = self.conv_out(h)
         
     | 
| 413 | 
         
            +
                    return h
         
     | 
| 414 | 
         
            +
             
     | 
| 415 | 
         
            +
                def get_last_layer(self):
         
     | 
| 416 | 
         
            +
                    return self.conv_out.weight
         
     | 
| 417 | 
         
            +
             
     | 
| 418 | 
         
            +
             
     | 
| 419 | 
         
            +
            class Encoder(nn.Module):
         
     | 
| 420 | 
         
            +
                def __init__(
         
     | 
| 421 | 
         
            +
                    self,
         
     | 
| 422 | 
         
            +
                    *,
         
     | 
| 423 | 
         
            +
                    ch,
         
     | 
| 424 | 
         
            +
                    out_ch,
         
     | 
| 425 | 
         
            +
                    ch_mult=(1, 2, 4, 8),
         
     | 
| 426 | 
         
            +
                    num_res_blocks,
         
     | 
| 427 | 
         
            +
                    attn_resolutions,
         
     | 
| 428 | 
         
            +
                    dropout=0.0,
         
     | 
| 429 | 
         
            +
                    resamp_with_conv=True,
         
     | 
| 430 | 
         
            +
                    in_channels,
         
     | 
| 431 | 
         
            +
                    resolution,
         
     | 
| 432 | 
         
            +
                    z_channels,
         
     | 
| 433 | 
         
            +
                    double_z=True,
         
     | 
| 434 | 
         
            +
                    use_linear_attn=False,
         
     | 
| 435 | 
         
            +
                    attn_type="vanilla",
         
     | 
| 436 | 
         
            +
                    downsample_time_stride4_levels=[],
         
     | 
| 437 | 
         
            +
                    **ignore_kwargs,
         
     | 
| 438 | 
         
            +
                ):
         
     | 
| 439 | 
         
            +
                    super().__init__()
         
     | 
| 440 | 
         
            +
                    if use_linear_attn:
         
     | 
| 441 | 
         
            +
                        attn_type = "linear"
         
     | 
| 442 | 
         
            +
                    self.ch = ch
         
     | 
| 443 | 
         
            +
                    self.temb_ch = 0
         
     | 
| 444 | 
         
            +
                    self.num_resolutions = len(ch_mult)
         
     | 
| 445 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 446 | 
         
            +
                    self.resolution = resolution
         
     | 
| 447 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 448 | 
         
            +
                    self.downsample_time_stride4_levels = downsample_time_stride4_levels
         
     | 
| 449 | 
         
            +
             
     | 
| 450 | 
         
            +
                    if len(self.downsample_time_stride4_levels) > 0:
         
     | 
| 451 | 
         
            +
                        assert max(self.downsample_time_stride4_levels) < self.num_resolutions, (
         
     | 
| 452 | 
         
            +
                            "The level to perform downsample 4 operation need to be smaller than the total resolution number %s"
         
     | 
| 453 | 
         
            +
                            % str(self.num_resolutions)
         
     | 
| 454 | 
         
            +
                        )
         
     | 
| 455 | 
         
            +
             
     | 
| 456 | 
         
            +
                    # downsampling
         
     | 
| 457 | 
         
            +
                    self.conv_in = torch.nn.Conv2d(
         
     | 
| 458 | 
         
            +
                        in_channels, self.ch, kernel_size=3, stride=1, padding=1
         
     | 
| 459 | 
         
            +
                    )
         
     | 
| 460 | 
         
            +
             
     | 
| 461 | 
         
            +
                    curr_res = resolution
         
     | 
| 462 | 
         
            +
                    in_ch_mult = (1,) + tuple(ch_mult)
         
     | 
| 463 | 
         
            +
                    self.in_ch_mult = in_ch_mult
         
     | 
| 464 | 
         
            +
                    self.down = nn.ModuleList()
         
     | 
| 465 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 466 | 
         
            +
                        block = nn.ModuleList()
         
     | 
| 467 | 
         
            +
                        attn = nn.ModuleList()
         
     | 
| 468 | 
         
            +
                        block_in = ch * in_ch_mult[i_level]
         
     | 
| 469 | 
         
            +
                        block_out = ch * ch_mult[i_level]
         
     | 
| 470 | 
         
            +
                        for i_block in range(self.num_res_blocks):
         
     | 
| 471 | 
         
            +
                            block.append(
         
     | 
| 472 | 
         
            +
                                ResnetBlock(
         
     | 
| 473 | 
         
            +
                                    in_channels=block_in,
         
     | 
| 474 | 
         
            +
                                    out_channels=block_out,
         
     | 
| 475 | 
         
            +
                                    temb_channels=self.temb_ch,
         
     | 
| 476 | 
         
            +
                                    dropout=dropout,
         
     | 
| 477 | 
         
            +
                                )
         
     | 
| 478 | 
         
            +
                            )
         
     | 
| 479 | 
         
            +
                            block_in = block_out
         
     | 
| 480 | 
         
            +
                            if curr_res in attn_resolutions:
         
     | 
| 481 | 
         
            +
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 482 | 
         
            +
                        down = nn.Module()
         
     | 
| 483 | 
         
            +
                        down.block = block
         
     | 
| 484 | 
         
            +
                        down.attn = attn
         
     | 
| 485 | 
         
            +
                        if i_level != self.num_resolutions - 1:
         
     | 
| 486 | 
         
            +
                            if i_level in self.downsample_time_stride4_levels:
         
     | 
| 487 | 
         
            +
                                down.downsample = DownsampleTimeStride4(block_in, resamp_with_conv)
         
     | 
| 488 | 
         
            +
                            else:
         
     | 
| 489 | 
         
            +
                                down.downsample = Downsample(block_in, resamp_with_conv)
         
     | 
| 490 | 
         
            +
                            curr_res = curr_res // 2
         
     | 
| 491 | 
         
            +
                        self.down.append(down)
         
     | 
| 492 | 
         
            +
             
     | 
| 493 | 
         
            +
                    # middle
         
     | 
| 494 | 
         
            +
                    self.mid = nn.Module()
         
     | 
| 495 | 
         
            +
                    self.mid.block_1 = ResnetBlock(
         
     | 
| 496 | 
         
            +
                        in_channels=block_in,
         
     | 
| 497 | 
         
            +
                        out_channels=block_in,
         
     | 
| 498 | 
         
            +
                        temb_channels=self.temb_ch,
         
     | 
| 499 | 
         
            +
                        dropout=dropout,
         
     | 
| 500 | 
         
            +
                    )
         
     | 
| 501 | 
         
            +
                    self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
         
     | 
| 502 | 
         
            +
                    self.mid.block_2 = ResnetBlock(
         
     | 
| 503 | 
         
            +
                        in_channels=block_in,
         
     | 
| 504 | 
         
            +
                        out_channels=block_in,
         
     | 
| 505 | 
         
            +
                        temb_channels=self.temb_ch,
         
     | 
| 506 | 
         
            +
                        dropout=dropout,
         
     | 
| 507 | 
         
            +
                    )
         
     | 
| 508 | 
         
            +
             
     | 
| 509 | 
         
            +
                    # end
         
     | 
| 510 | 
         
            +
                    self.norm_out = Normalize(block_in)
         
     | 
| 511 | 
         
            +
                    self.conv_out = torch.nn.Conv2d(
         
     | 
| 512 | 
         
            +
                        block_in,
         
     | 
| 513 | 
         
            +
                        2 * z_channels if double_z else z_channels,
         
     | 
| 514 | 
         
            +
                        kernel_size=3,
         
     | 
| 515 | 
         
            +
                        stride=1,
         
     | 
| 516 | 
         
            +
                        padding=1,
         
     | 
| 517 | 
         
            +
                    )
         
     | 
| 518 | 
         
            +
             
     | 
| 519 | 
         
            +
                def forward(self, x):
         
     | 
| 520 | 
         
            +
                    # timestep embedding
         
     | 
| 521 | 
         
            +
                    temb = None
         
     | 
| 522 | 
         
            +
                    # downsampling
         
     | 
| 523 | 
         
            +
                    hs = [self.conv_in(x)]
         
     | 
| 524 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 525 | 
         
            +
                        for i_block in range(self.num_res_blocks):
         
     | 
| 526 | 
         
            +
                            h = self.down[i_level].block[i_block](hs[-1], temb)
         
     | 
| 527 | 
         
            +
                            if len(self.down[i_level].attn) > 0:
         
     | 
| 528 | 
         
            +
                                h = self.down[i_level].attn[i_block](h)
         
     | 
| 529 | 
         
            +
                            hs.append(h)
         
     | 
| 530 | 
         
            +
                        if i_level != self.num_resolutions - 1:
         
     | 
| 531 | 
         
            +
                            hs.append(self.down[i_level].downsample(hs[-1]))
         
     | 
| 532 | 
         
            +
             
     | 
| 533 | 
         
            +
                    # middle
         
     | 
| 534 | 
         
            +
                    h = hs[-1]
         
     | 
| 535 | 
         
            +
                    h = self.mid.block_1(h, temb)
         
     | 
| 536 | 
         
            +
                    h = self.mid.attn_1(h)
         
     | 
| 537 | 
         
            +
                    h = self.mid.block_2(h, temb)
         
     | 
| 538 | 
         
            +
             
     | 
| 539 | 
         
            +
                    # end
         
     | 
| 540 | 
         
            +
                    h = self.norm_out(h)
         
     | 
| 541 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 542 | 
         
            +
                    h = self.conv_out(h)
         
     | 
| 543 | 
         
            +
                    return h
         
     | 
| 544 | 
         
            +
             
     | 
| 545 | 
         
            +
             
     | 
| 546 | 
         
            +
            class Decoder(nn.Module):
         
     | 
| 547 | 
         
            +
                def __init__(
         
     | 
| 548 | 
         
            +
                    self,
         
     | 
| 549 | 
         
            +
                    *,
         
     | 
| 550 | 
         
            +
                    ch,
         
     | 
| 551 | 
         
            +
                    out_ch,
         
     | 
| 552 | 
         
            +
                    ch_mult=(1, 2, 4, 8),
         
     | 
| 553 | 
         
            +
                    num_res_blocks,
         
     | 
| 554 | 
         
            +
                    attn_resolutions,
         
     | 
| 555 | 
         
            +
                    dropout=0.0,
         
     | 
| 556 | 
         
            +
                    resamp_with_conv=True,
         
     | 
| 557 | 
         
            +
                    in_channels,
         
     | 
| 558 | 
         
            +
                    resolution,
         
     | 
| 559 | 
         
            +
                    z_channels,
         
     | 
| 560 | 
         
            +
                    give_pre_end=False,
         
     | 
| 561 | 
         
            +
                    tanh_out=False,
         
     | 
| 562 | 
         
            +
                    use_linear_attn=False,
         
     | 
| 563 | 
         
            +
                    downsample_time_stride4_levels=[],
         
     | 
| 564 | 
         
            +
                    attn_type="vanilla",
         
     | 
| 565 | 
         
            +
                    **ignorekwargs,
         
     | 
| 566 | 
         
            +
                ):
         
     | 
| 567 | 
         
            +
                    super().__init__()
         
     | 
| 568 | 
         
            +
                    if use_linear_attn:
         
     | 
| 569 | 
         
            +
                        attn_type = "linear"
         
     | 
| 570 | 
         
            +
                    self.ch = ch
         
     | 
| 571 | 
         
            +
                    self.temb_ch = 0
         
     | 
| 572 | 
         
            +
                    self.num_resolutions = len(ch_mult)
         
     | 
| 573 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 574 | 
         
            +
                    self.resolution = resolution
         
     | 
| 575 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 576 | 
         
            +
                    self.give_pre_end = give_pre_end
         
     | 
| 577 | 
         
            +
                    self.tanh_out = tanh_out
         
     | 
| 578 | 
         
            +
                    self.downsample_time_stride4_levels = downsample_time_stride4_levels
         
     | 
| 579 | 
         
            +
             
     | 
| 580 | 
         
            +
                    if len(self.downsample_time_stride4_levels) > 0:
         
     | 
| 581 | 
         
            +
                        assert max(self.downsample_time_stride4_levels) < self.num_resolutions, (
         
     | 
| 582 | 
         
            +
                            "The level to perform downsample 4 operation need to be smaller than the total resolution number %s"
         
     | 
| 583 | 
         
            +
                            % str(self.num_resolutions)
         
     | 
| 584 | 
         
            +
                        )
         
     | 
| 585 | 
         
            +
             
     | 
| 586 | 
         
            +
                    # compute in_ch_mult, block_in and curr_res at lowest res
         
     | 
| 587 | 
         
            +
                    in_ch_mult = (1,) + tuple(ch_mult)
         
     | 
| 588 | 
         
            +
                    block_in = ch * ch_mult[self.num_resolutions - 1]
         
     | 
| 589 | 
         
            +
                    curr_res = resolution // 2 ** (self.num_resolutions - 1)
         
     | 
| 590 | 
         
            +
                    self.z_shape = (1, z_channels, curr_res, curr_res)
         
     | 
| 591 | 
         
            +
                    # print("Working with z of shape {} = {} dimensions.".format(
         
     | 
| 592 | 
         
            +
                    # self.z_shape, np.prod(self.z_shape)))
         
     | 
| 593 | 
         
            +
             
     | 
| 594 | 
         
            +
                    # z to block_in
         
     | 
| 595 | 
         
            +
                    self.conv_in = torch.nn.Conv2d(
         
     | 
| 596 | 
         
            +
                        z_channels, block_in, kernel_size=3, stride=1, padding=1
         
     | 
| 597 | 
         
            +
                    )
         
     | 
| 598 | 
         
            +
             
     | 
| 599 | 
         
            +
                    # middle
         
     | 
| 600 | 
         
            +
                    self.mid = nn.Module()
         
     | 
| 601 | 
         
            +
                    self.mid.block_1 = ResnetBlock(
         
     | 
| 602 | 
         
            +
                        in_channels=block_in,
         
     | 
| 603 | 
         
            +
                        out_channels=block_in,
         
     | 
| 604 | 
         
            +
                        temb_channels=self.temb_ch,
         
     | 
| 605 | 
         
            +
                        dropout=dropout,
         
     | 
| 606 | 
         
            +
                    )
         
     | 
| 607 | 
         
            +
                    self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
         
     | 
| 608 | 
         
            +
                    self.mid.block_2 = ResnetBlock(
         
     | 
| 609 | 
         
            +
                        in_channels=block_in,
         
     | 
| 610 | 
         
            +
                        out_channels=block_in,
         
     | 
| 611 | 
         
            +
                        temb_channels=self.temb_ch,
         
     | 
| 612 | 
         
            +
                        dropout=dropout,
         
     | 
| 613 | 
         
            +
                    )
         
     | 
| 614 | 
         
            +
             
     | 
| 615 | 
         
            +
                    # upsampling
         
     | 
| 616 | 
         
            +
                    self.up = nn.ModuleList()
         
     | 
| 617 | 
         
            +
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 618 | 
         
            +
                        block = nn.ModuleList()
         
     | 
| 619 | 
         
            +
                        attn = nn.ModuleList()
         
     | 
| 620 | 
         
            +
                        block_out = ch * ch_mult[i_level]
         
     | 
| 621 | 
         
            +
                        for i_block in range(self.num_res_blocks + 1):
         
     | 
| 622 | 
         
            +
                            block.append(
         
     | 
| 623 | 
         
            +
                                ResnetBlock(
         
     | 
| 624 | 
         
            +
                                    in_channels=block_in,
         
     | 
| 625 | 
         
            +
                                    out_channels=block_out,
         
     | 
| 626 | 
         
            +
                                    temb_channels=self.temb_ch,
         
     | 
| 627 | 
         
            +
                                    dropout=dropout,
         
     | 
| 628 | 
         
            +
                                )
         
     | 
| 629 | 
         
            +
                            )
         
     | 
| 630 | 
         
            +
                            block_in = block_out
         
     | 
| 631 | 
         
            +
                            if curr_res in attn_resolutions:
         
     | 
| 632 | 
         
            +
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 633 | 
         
            +
                        up = nn.Module()
         
     | 
| 634 | 
         
            +
                        up.block = block
         
     | 
| 635 | 
         
            +
                        up.attn = attn
         
     | 
| 636 | 
         
            +
                        if i_level != 0:
         
     | 
| 637 | 
         
            +
                            if i_level - 1 in self.downsample_time_stride4_levels:
         
     | 
| 638 | 
         
            +
                                up.upsample = UpsampleTimeStride4(block_in, resamp_with_conv)
         
     | 
| 639 | 
         
            +
                            else:
         
     | 
| 640 | 
         
            +
                                up.upsample = Upsample(block_in, resamp_with_conv)
         
     | 
| 641 | 
         
            +
                            curr_res = curr_res * 2
         
     | 
| 642 | 
         
            +
                        self.up.insert(0, up)  # prepend to get consistent order
         
     | 
| 643 | 
         
            +
             
     | 
| 644 | 
         
            +
                    # end
         
     | 
| 645 | 
         
            +
                    self.norm_out = Normalize(block_in)
         
     | 
| 646 | 
         
            +
                    self.conv_out = torch.nn.Conv2d(
         
     | 
| 647 | 
         
            +
                        block_in, out_ch, kernel_size=3, stride=1, padding=1
         
     | 
| 648 | 
         
            +
                    )
         
     | 
| 649 | 
         
            +
             
     | 
| 650 | 
         
            +
                def forward(self, z):
         
     | 
| 651 | 
         
            +
                    # assert z.shape[1:] == self.z_shape[1:]
         
     | 
| 652 | 
         
            +
                    self.last_z_shape = z.shape
         
     | 
| 653 | 
         
            +
             
     | 
| 654 | 
         
            +
                    # timestep embedding
         
     | 
| 655 | 
         
            +
                    temb = None
         
     | 
| 656 | 
         
            +
             
     | 
| 657 | 
         
            +
                    # z to block_in
         
     | 
| 658 | 
         
            +
                    h = self.conv_in(z)
         
     | 
| 659 | 
         
            +
             
     | 
| 660 | 
         
            +
                    # middle
         
     | 
| 661 | 
         
            +
                    h = self.mid.block_1(h, temb)
         
     | 
| 662 | 
         
            +
                    h = self.mid.attn_1(h)
         
     | 
| 663 | 
         
            +
                    h = self.mid.block_2(h, temb)
         
     | 
| 664 | 
         
            +
             
     | 
| 665 | 
         
            +
                    # upsampling
         
     | 
| 666 | 
         
            +
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 667 | 
         
            +
                        for i_block in range(self.num_res_blocks + 1):
         
     | 
| 668 | 
         
            +
                            h = self.up[i_level].block[i_block](h, temb)
         
     | 
| 669 | 
         
            +
                            if len(self.up[i_level].attn) > 0:
         
     | 
| 670 | 
         
            +
                                h = self.up[i_level].attn[i_block](h)
         
     | 
| 671 | 
         
            +
                        if i_level != 0:
         
     | 
| 672 | 
         
            +
                            h = self.up[i_level].upsample(h)
         
     | 
| 673 | 
         
            +
             
     | 
| 674 | 
         
            +
                    # end
         
     | 
| 675 | 
         
            +
                    if self.give_pre_end:
         
     | 
| 676 | 
         
            +
                        return h
         
     | 
| 677 | 
         
            +
             
     | 
| 678 | 
         
            +
                    h = self.norm_out(h)
         
     | 
| 679 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 680 | 
         
            +
                    h = self.conv_out(h)
         
     | 
| 681 | 
         
            +
                    if self.tanh_out:
         
     | 
| 682 | 
         
            +
                        h = torch.tanh(h)
         
     | 
| 683 | 
         
            +
                    return h
         
     | 
| 684 | 
         
            +
             
     | 
| 685 | 
         
            +
             
     | 
| 686 | 
         
            +
            class SimpleDecoder(nn.Module):
         
     | 
| 687 | 
         
            +
                def __init__(self, in_channels, out_channels, *args, **kwargs):
         
     | 
| 688 | 
         
            +
                    super().__init__()
         
     | 
| 689 | 
         
            +
                    self.model = nn.ModuleList(
         
     | 
| 690 | 
         
            +
                        [
         
     | 
| 691 | 
         
            +
                            nn.Conv2d(in_channels, in_channels, 1),
         
     | 
| 692 | 
         
            +
                            ResnetBlock(
         
     | 
| 693 | 
         
            +
                                in_channels=in_channels,
         
     | 
| 694 | 
         
            +
                                out_channels=2 * in_channels,
         
     | 
| 695 | 
         
            +
                                temb_channels=0,
         
     | 
| 696 | 
         
            +
                                dropout=0.0,
         
     | 
| 697 | 
         
            +
                            ),
         
     | 
| 698 | 
         
            +
                            ResnetBlock(
         
     | 
| 699 | 
         
            +
                                in_channels=2 * in_channels,
         
     | 
| 700 | 
         
            +
                                out_channels=4 * in_channels,
         
     | 
| 701 | 
         
            +
                                temb_channels=0,
         
     | 
| 702 | 
         
            +
                                dropout=0.0,
         
     | 
| 703 | 
         
            +
                            ),
         
     | 
| 704 | 
         
            +
                            ResnetBlock(
         
     | 
| 705 | 
         
            +
                                in_channels=4 * in_channels,
         
     | 
| 706 | 
         
            +
                                out_channels=2 * in_channels,
         
     | 
| 707 | 
         
            +
                                temb_channels=0,
         
     | 
| 708 | 
         
            +
                                dropout=0.0,
         
     | 
| 709 | 
         
            +
                            ),
         
     | 
| 710 | 
         
            +
                            nn.Conv2d(2 * in_channels, in_channels, 1),
         
     | 
| 711 | 
         
            +
                            Upsample(in_channels, with_conv=True),
         
     | 
| 712 | 
         
            +
                        ]
         
     | 
| 713 | 
         
            +
                    )
         
     | 
| 714 | 
         
            +
                    # end
         
     | 
| 715 | 
         
            +
                    self.norm_out = Normalize(in_channels)
         
     | 
| 716 | 
         
            +
                    self.conv_out = torch.nn.Conv2d(
         
     | 
| 717 | 
         
            +
                        in_channels, out_channels, kernel_size=3, stride=1, padding=1
         
     | 
| 718 | 
         
            +
                    )
         
     | 
| 719 | 
         
            +
             
     | 
| 720 | 
         
            +
                def forward(self, x):
         
     | 
| 721 | 
         
            +
                    for i, layer in enumerate(self.model):
         
     | 
| 722 | 
         
            +
                        if i in [1, 2, 3]:
         
     | 
| 723 | 
         
            +
                            x = layer(x, None)
         
     | 
| 724 | 
         
            +
                        else:
         
     | 
| 725 | 
         
            +
                            x = layer(x)
         
     | 
| 726 | 
         
            +
             
     | 
| 727 | 
         
            +
                    h = self.norm_out(x)
         
     | 
| 728 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 729 | 
         
            +
                    x = self.conv_out(h)
         
     | 
| 730 | 
         
            +
                    return x
         
     | 
| 731 | 
         
            +
             
     | 
| 732 | 
         
            +
             
     | 
| 733 | 
         
            +
            class UpsampleDecoder(nn.Module):
         
     | 
| 734 | 
         
            +
                def __init__(
         
     | 
| 735 | 
         
            +
                    self,
         
     | 
| 736 | 
         
            +
                    in_channels,
         
     | 
| 737 | 
         
            +
                    out_channels,
         
     | 
| 738 | 
         
            +
                    ch,
         
     | 
| 739 | 
         
            +
                    num_res_blocks,
         
     | 
| 740 | 
         
            +
                    resolution,
         
     | 
| 741 | 
         
            +
                    ch_mult=(2, 2),
         
     | 
| 742 | 
         
            +
                    dropout=0.0,
         
     | 
| 743 | 
         
            +
                ):
         
     | 
| 744 | 
         
            +
                    super().__init__()
         
     | 
| 745 | 
         
            +
                    # upsampling
         
     | 
| 746 | 
         
            +
                    self.temb_ch = 0
         
     | 
| 747 | 
         
            +
                    self.num_resolutions = len(ch_mult)
         
     | 
| 748 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 749 | 
         
            +
                    block_in = in_channels
         
     | 
| 750 | 
         
            +
                    curr_res = resolution // 2 ** (self.num_resolutions - 1)
         
     | 
| 751 | 
         
            +
                    self.res_blocks = nn.ModuleList()
         
     | 
| 752 | 
         
            +
                    self.upsample_blocks = nn.ModuleList()
         
     | 
| 753 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 754 | 
         
            +
                        res_block = []
         
     | 
| 755 | 
         
            +
                        block_out = ch * ch_mult[i_level]
         
     | 
| 756 | 
         
            +
                        for i_block in range(self.num_res_blocks + 1):
         
     | 
| 757 | 
         
            +
                            res_block.append(
         
     | 
| 758 | 
         
            +
                                ResnetBlock(
         
     | 
| 759 | 
         
            +
                                    in_channels=block_in,
         
     | 
| 760 | 
         
            +
                                    out_channels=block_out,
         
     | 
| 761 | 
         
            +
                                    temb_channels=self.temb_ch,
         
     | 
| 762 | 
         
            +
                                    dropout=dropout,
         
     | 
| 763 | 
         
            +
                                )
         
     | 
| 764 | 
         
            +
                            )
         
     | 
| 765 | 
         
            +
                            block_in = block_out
         
     | 
| 766 | 
         
            +
                        self.res_blocks.append(nn.ModuleList(res_block))
         
     | 
| 767 | 
         
            +
                        if i_level != self.num_resolutions - 1:
         
     | 
| 768 | 
         
            +
                            self.upsample_blocks.append(Upsample(block_in, True))
         
     | 
| 769 | 
         
            +
                            curr_res = curr_res * 2
         
     | 
| 770 | 
         
            +
             
     | 
| 771 | 
         
            +
                    # end
         
     | 
| 772 | 
         
            +
                    self.norm_out = Normalize(block_in)
         
     | 
| 773 | 
         
            +
                    self.conv_out = torch.nn.Conv2d(
         
     | 
| 774 | 
         
            +
                        block_in, out_channels, kernel_size=3, stride=1, padding=1
         
     | 
| 775 | 
         
            +
                    )
         
     | 
| 776 | 
         
            +
             
     | 
| 777 | 
         
            +
                def forward(self, x):
         
     | 
| 778 | 
         
            +
                    # upsampling
         
     | 
| 779 | 
         
            +
                    h = x
         
     | 
| 780 | 
         
            +
                    for k, i_level in enumerate(range(self.num_resolutions)):
         
     | 
| 781 | 
         
            +
                        for i_block in range(self.num_res_blocks + 1):
         
     | 
| 782 | 
         
            +
                            h = self.res_blocks[i_level][i_block](h, None)
         
     | 
| 783 | 
         
            +
                        if i_level != self.num_resolutions - 1:
         
     | 
| 784 | 
         
            +
                            h = self.upsample_blocks[k](h)
         
     | 
| 785 | 
         
            +
                    h = self.norm_out(h)
         
     | 
| 786 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 787 | 
         
            +
                    h = self.conv_out(h)
         
     | 
| 788 | 
         
            +
                    return h
         
     | 
| 789 | 
         
            +
             
     | 
| 790 | 
         
            +
             
     | 
| 791 | 
         
            +
            class LatentRescaler(nn.Module):
         
     | 
| 792 | 
         
            +
                def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
         
     | 
| 793 | 
         
            +
                    super().__init__()
         
     | 
| 794 | 
         
            +
                    # residual block, interpolate, residual block
         
     | 
| 795 | 
         
            +
                    self.factor = factor
         
     | 
| 796 | 
         
            +
                    self.conv_in = nn.Conv2d(
         
     | 
| 797 | 
         
            +
                        in_channels, mid_channels, kernel_size=3, stride=1, padding=1
         
     | 
| 798 | 
         
            +
                    )
         
     | 
| 799 | 
         
            +
                    self.res_block1 = nn.ModuleList(
         
     | 
| 800 | 
         
            +
                        [
         
     | 
| 801 | 
         
            +
                            ResnetBlock(
         
     | 
| 802 | 
         
            +
                                in_channels=mid_channels,
         
     | 
| 803 | 
         
            +
                                out_channels=mid_channels,
         
     | 
| 804 | 
         
            +
                                temb_channels=0,
         
     | 
| 805 | 
         
            +
                                dropout=0.0,
         
     | 
| 806 | 
         
            +
                            )
         
     | 
| 807 | 
         
            +
                            for _ in range(depth)
         
     | 
| 808 | 
         
            +
                        ]
         
     | 
| 809 | 
         
            +
                    )
         
     | 
| 810 | 
         
            +
                    self.attn = AttnBlock(mid_channels)
         
     | 
| 811 | 
         
            +
                    self.res_block2 = nn.ModuleList(
         
     | 
| 812 | 
         
            +
                        [
         
     | 
| 813 | 
         
            +
                            ResnetBlock(
         
     | 
| 814 | 
         
            +
                                in_channels=mid_channels,
         
     | 
| 815 | 
         
            +
                                out_channels=mid_channels,
         
     | 
| 816 | 
         
            +
                                temb_channels=0,
         
     | 
| 817 | 
         
            +
                                dropout=0.0,
         
     | 
| 818 | 
         
            +
                            )
         
     | 
| 819 | 
         
            +
                            for _ in range(depth)
         
     | 
| 820 | 
         
            +
                        ]
         
     | 
| 821 | 
         
            +
                    )
         
     | 
| 822 | 
         
            +
             
     | 
| 823 | 
         
            +
                    self.conv_out = nn.Conv2d(
         
     | 
| 824 | 
         
            +
                        mid_channels,
         
     | 
| 825 | 
         
            +
                        out_channels,
         
     | 
| 826 | 
         
            +
                        kernel_size=1,
         
     | 
| 827 | 
         
            +
                    )
         
     | 
| 828 | 
         
            +
             
     | 
| 829 | 
         
            +
                def forward(self, x):
         
     | 
| 830 | 
         
            +
                    x = self.conv_in(x)
         
     | 
| 831 | 
         
            +
                    for block in self.res_block1:
         
     | 
| 832 | 
         
            +
                        x = block(x, None)
         
     | 
| 833 | 
         
            +
                    x = torch.nn.functional.interpolate(
         
     | 
| 834 | 
         
            +
                        x,
         
     | 
| 835 | 
         
            +
                        size=(
         
     | 
| 836 | 
         
            +
                            int(round(x.shape[2] * self.factor)),
         
     | 
| 837 | 
         
            +
                            int(round(x.shape[3] * self.factor)),
         
     | 
| 838 | 
         
            +
                        ),
         
     | 
| 839 | 
         
            +
                    )
         
     | 
| 840 | 
         
            +
                    x = self.attn(x).contiguous()
         
     | 
| 841 | 
         
            +
                    for block in self.res_block2:
         
     | 
| 842 | 
         
            +
                        x = block(x, None)
         
     | 
| 843 | 
         
            +
                    x = self.conv_out(x)
         
     | 
| 844 | 
         
            +
                    return x
         
     | 
| 845 | 
         
            +
             
     | 
| 846 | 
         
            +
             
     | 
| 847 | 
         
            +
            class MergedRescaleEncoder(nn.Module):
         
     | 
| 848 | 
         
            +
                def __init__(
         
     | 
| 849 | 
         
            +
                    self,
         
     | 
| 850 | 
         
            +
                    in_channels,
         
     | 
| 851 | 
         
            +
                    ch,
         
     | 
| 852 | 
         
            +
                    resolution,
         
     | 
| 853 | 
         
            +
                    out_ch,
         
     | 
| 854 | 
         
            +
                    num_res_blocks,
         
     | 
| 855 | 
         
            +
                    attn_resolutions,
         
     | 
| 856 | 
         
            +
                    dropout=0.0,
         
     | 
| 857 | 
         
            +
                    resamp_with_conv=True,
         
     | 
| 858 | 
         
            +
                    ch_mult=(1, 2, 4, 8),
         
     | 
| 859 | 
         
            +
                    rescale_factor=1.0,
         
     | 
| 860 | 
         
            +
                    rescale_module_depth=1,
         
     | 
| 861 | 
         
            +
                ):
         
     | 
| 862 | 
         
            +
                    super().__init__()
         
     | 
| 863 | 
         
            +
                    intermediate_chn = ch * ch_mult[-1]
         
     | 
| 864 | 
         
            +
                    self.encoder = Encoder(
         
     | 
| 865 | 
         
            +
                        in_channels=in_channels,
         
     | 
| 866 | 
         
            +
                        num_res_blocks=num_res_blocks,
         
     | 
| 867 | 
         
            +
                        ch=ch,
         
     | 
| 868 | 
         
            +
                        ch_mult=ch_mult,
         
     | 
| 869 | 
         
            +
                        z_channels=intermediate_chn,
         
     | 
| 870 | 
         
            +
                        double_z=False,
         
     | 
| 871 | 
         
            +
                        resolution=resolution,
         
     | 
| 872 | 
         
            +
                        attn_resolutions=attn_resolutions,
         
     | 
| 873 | 
         
            +
                        dropout=dropout,
         
     | 
| 874 | 
         
            +
                        resamp_with_conv=resamp_with_conv,
         
     | 
| 875 | 
         
            +
                        out_ch=None,
         
     | 
| 876 | 
         
            +
                    )
         
     | 
| 877 | 
         
            +
                    self.rescaler = LatentRescaler(
         
     | 
| 878 | 
         
            +
                        factor=rescale_factor,
         
     | 
| 879 | 
         
            +
                        in_channels=intermediate_chn,
         
     | 
| 880 | 
         
            +
                        mid_channels=intermediate_chn,
         
     | 
| 881 | 
         
            +
                        out_channels=out_ch,
         
     | 
| 882 | 
         
            +
                        depth=rescale_module_depth,
         
     | 
| 883 | 
         
            +
                    )
         
     | 
| 884 | 
         
            +
             
     | 
| 885 | 
         
            +
                def forward(self, x):
         
     | 
| 886 | 
         
            +
                    x = self.encoder(x)
         
     | 
| 887 | 
         
            +
                    x = self.rescaler(x)
         
     | 
| 888 | 
         
            +
                    return x
         
     | 
| 889 | 
         
            +
             
     | 
| 890 | 
         
            +
             
     | 
| 891 | 
         
            +
            class MergedRescaleDecoder(nn.Module):
         
     | 
| 892 | 
         
            +
                def __init__(
         
     | 
| 893 | 
         
            +
                    self,
         
     | 
| 894 | 
         
            +
                    z_channels,
         
     | 
| 895 | 
         
            +
                    out_ch,
         
     | 
| 896 | 
         
            +
                    resolution,
         
     | 
| 897 | 
         
            +
                    num_res_blocks,
         
     | 
| 898 | 
         
            +
                    attn_resolutions,
         
     | 
| 899 | 
         
            +
                    ch,
         
     | 
| 900 | 
         
            +
                    ch_mult=(1, 2, 4, 8),
         
     | 
| 901 | 
         
            +
                    dropout=0.0,
         
     | 
| 902 | 
         
            +
                    resamp_with_conv=True,
         
     | 
| 903 | 
         
            +
                    rescale_factor=1.0,
         
     | 
| 904 | 
         
            +
                    rescale_module_depth=1,
         
     | 
| 905 | 
         
            +
                ):
         
     | 
| 906 | 
         
            +
                    super().__init__()
         
     | 
| 907 | 
         
            +
                    tmp_chn = z_channels * ch_mult[-1]
         
     | 
| 908 | 
         
            +
                    self.decoder = Decoder(
         
     | 
| 909 | 
         
            +
                        out_ch=out_ch,
         
     | 
| 910 | 
         
            +
                        z_channels=tmp_chn,
         
     | 
| 911 | 
         
            +
                        attn_resolutions=attn_resolutions,
         
     | 
| 912 | 
         
            +
                        dropout=dropout,
         
     | 
| 913 | 
         
            +
                        resamp_with_conv=resamp_with_conv,
         
     | 
| 914 | 
         
            +
                        in_channels=None,
         
     | 
| 915 | 
         
            +
                        num_res_blocks=num_res_blocks,
         
     | 
| 916 | 
         
            +
                        ch_mult=ch_mult,
         
     | 
| 917 | 
         
            +
                        resolution=resolution,
         
     | 
| 918 | 
         
            +
                        ch=ch,
         
     | 
| 919 | 
         
            +
                    )
         
     | 
| 920 | 
         
            +
                    self.rescaler = LatentRescaler(
         
     | 
| 921 | 
         
            +
                        factor=rescale_factor,
         
     | 
| 922 | 
         
            +
                        in_channels=z_channels,
         
     | 
| 923 | 
         
            +
                        mid_channels=tmp_chn,
         
     | 
| 924 | 
         
            +
                        out_channels=tmp_chn,
         
     | 
| 925 | 
         
            +
                        depth=rescale_module_depth,
         
     | 
| 926 | 
         
            +
                    )
         
     | 
| 927 | 
         
            +
             
     | 
| 928 | 
         
            +
                def forward(self, x):
         
     | 
| 929 | 
         
            +
                    x = self.rescaler(x)
         
     | 
| 930 | 
         
            +
                    x = self.decoder(x)
         
     | 
| 931 | 
         
            +
                    return x
         
     | 
| 932 | 
         
            +
             
     | 
| 933 | 
         
            +
             
     | 
| 934 | 
         
            +
            class Upsampler(nn.Module):
         
     | 
| 935 | 
         
            +
                def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
         
     | 
| 936 | 
         
            +
                    super().__init__()
         
     | 
| 937 | 
         
            +
                    assert out_size >= in_size
         
     | 
| 938 | 
         
            +
                    num_blocks = int(np.log2(out_size // in_size)) + 1
         
     | 
| 939 | 
         
            +
                    factor_up = 1.0 + (out_size % in_size)
         
     | 
| 940 | 
         
            +
                    print(
         
     | 
| 941 | 
         
            +
                        f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}"
         
     | 
| 942 | 
         
            +
                    )
         
     | 
| 943 | 
         
            +
                    self.rescaler = LatentRescaler(
         
     | 
| 944 | 
         
            +
                        factor=factor_up,
         
     | 
| 945 | 
         
            +
                        in_channels=in_channels,
         
     | 
| 946 | 
         
            +
                        mid_channels=2 * in_channels,
         
     | 
| 947 | 
         
            +
                        out_channels=in_channels,
         
     | 
| 948 | 
         
            +
                    )
         
     | 
| 949 | 
         
            +
                    self.decoder = Decoder(
         
     | 
| 950 | 
         
            +
                        out_ch=out_channels,
         
     | 
| 951 | 
         
            +
                        resolution=out_size,
         
     | 
| 952 | 
         
            +
                        z_channels=in_channels,
         
     | 
| 953 | 
         
            +
                        num_res_blocks=2,
         
     | 
| 954 | 
         
            +
                        attn_resolutions=[],
         
     | 
| 955 | 
         
            +
                        in_channels=None,
         
     | 
| 956 | 
         
            +
                        ch=in_channels,
         
     | 
| 957 | 
         
            +
                        ch_mult=[ch_mult for _ in range(num_blocks)],
         
     | 
| 958 | 
         
            +
                    )
         
     | 
| 959 | 
         
            +
             
     | 
| 960 | 
         
            +
                def forward(self, x):
         
     | 
| 961 | 
         
            +
                    x = self.rescaler(x)
         
     | 
| 962 | 
         
            +
                    x = self.decoder(x)
         
     | 
| 963 | 
         
            +
                    return x
         
     | 
| 964 | 
         
            +
             
     | 
| 965 | 
         
            +
             
     | 
| 966 | 
         
            +
            class Resize(nn.Module):
         
     | 
| 967 | 
         
            +
                def __init__(self, in_channels=None, learned=False, mode="bilinear"):
         
     | 
| 968 | 
         
            +
                    super().__init__()
         
     | 
| 969 | 
         
            +
                    self.with_conv = learned
         
     | 
| 970 | 
         
            +
                    self.mode = mode
         
     | 
| 971 | 
         
            +
                    if self.with_conv:
         
     | 
| 972 | 
         
            +
                        print(
         
     | 
| 973 | 
         
            +
                            f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode"
         
     | 
| 974 | 
         
            +
                        )
         
     | 
| 975 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 976 | 
         
            +
                        assert in_channels is not None
         
     | 
| 977 | 
         
            +
                        # no asymmetric padding in torch conv, must do it ourselves
         
     | 
| 978 | 
         
            +
                        self.conv = torch.nn.Conv2d(
         
     | 
| 979 | 
         
            +
                            in_channels, in_channels, kernel_size=4, stride=2, padding=1
         
     | 
| 980 | 
         
            +
                        )
         
     | 
| 981 | 
         
            +
             
     | 
| 982 | 
         
            +
                def forward(self, x, scale_factor=1.0):
         
     | 
| 983 | 
         
            +
                    if scale_factor == 1.0:
         
     | 
| 984 | 
         
            +
                        return x
         
     | 
| 985 | 
         
            +
                    else:
         
     | 
| 986 | 
         
            +
                        x = torch.nn.functional.interpolate(
         
     | 
| 987 | 
         
            +
                            x, mode=self.mode, align_corners=False, scale_factor=scale_factor
         
     | 
| 988 | 
         
            +
                        )
         
     | 
| 989 | 
         
            +
                    return x
         
     | 
| 990 | 
         
            +
             
     | 
| 991 | 
         
            +
             
     | 
| 992 | 
         
            +
            class FirstStagePostProcessor(nn.Module):
         
     | 
| 993 | 
         
            +
                def __init__(
         
     | 
| 994 | 
         
            +
                    self,
         
     | 
| 995 | 
         
            +
                    ch_mult: list,
         
     | 
| 996 | 
         
            +
                    in_channels,
         
     | 
| 997 | 
         
            +
                    pretrained_model: nn.Module = None,
         
     | 
| 998 | 
         
            +
                    reshape=False,
         
     | 
| 999 | 
         
            +
                    n_channels=None,
         
     | 
| 1000 | 
         
            +
                    dropout=0.0,
         
     | 
| 1001 | 
         
            +
                    pretrained_config=None,
         
     | 
| 1002 | 
         
            +
                ):
         
     | 
| 1003 | 
         
            +
                    super().__init__()
         
     | 
| 1004 | 
         
            +
                    if pretrained_config is None:
         
     | 
| 1005 | 
         
            +
                        assert (
         
     | 
| 1006 | 
         
            +
                            pretrained_model is not None
         
     | 
| 1007 | 
         
            +
                        ), 'Either "pretrained_model" or "pretrained_config" must not be None'
         
     | 
| 1008 | 
         
            +
                        self.pretrained_model = pretrained_model
         
     | 
| 1009 | 
         
            +
                    else:
         
     | 
| 1010 | 
         
            +
                        assert (
         
     | 
| 1011 | 
         
            +
                            pretrained_config is not None
         
     | 
| 1012 | 
         
            +
                        ), 'Either "pretrained_model" or "pretrained_config" must not be None'
         
     | 
| 1013 | 
         
            +
                        self.instantiate_pretrained(pretrained_config)
         
     | 
| 1014 | 
         
            +
             
     | 
| 1015 | 
         
            +
                    self.do_reshape = reshape
         
     | 
| 1016 | 
         
            +
             
     | 
| 1017 | 
         
            +
                    if n_channels is None:
         
     | 
| 1018 | 
         
            +
                        n_channels = self.pretrained_model.encoder.ch
         
     | 
| 1019 | 
         
            +
             
     | 
| 1020 | 
         
            +
                    self.proj_norm = Normalize(in_channels, num_groups=in_channels // 2)
         
     | 
| 1021 | 
         
            +
                    self.proj = nn.Conv2d(
         
     | 
| 1022 | 
         
            +
                        in_channels, n_channels, kernel_size=3, stride=1, padding=1
         
     | 
| 1023 | 
         
            +
                    )
         
     | 
| 1024 | 
         
            +
             
     | 
| 1025 | 
         
            +
                    blocks = []
         
     | 
| 1026 | 
         
            +
                    downs = []
         
     | 
| 1027 | 
         
            +
                    ch_in = n_channels
         
     | 
| 1028 | 
         
            +
                    for m in ch_mult:
         
     | 
| 1029 | 
         
            +
                        blocks.append(
         
     | 
| 1030 | 
         
            +
                            ResnetBlock(
         
     | 
| 1031 | 
         
            +
                                in_channels=ch_in, out_channels=m * n_channels, dropout=dropout
         
     | 
| 1032 | 
         
            +
                            )
         
     | 
| 1033 | 
         
            +
                        )
         
     | 
| 1034 | 
         
            +
                        ch_in = m * n_channels
         
     | 
| 1035 | 
         
            +
                        downs.append(Downsample(ch_in, with_conv=False))
         
     | 
| 1036 | 
         
            +
             
     | 
| 1037 | 
         
            +
                    self.model = nn.ModuleList(blocks)
         
     | 
| 1038 | 
         
            +
                    self.downsampler = nn.ModuleList(downs)
         
     | 
| 1039 | 
         
            +
             
     | 
| 1040 | 
         
            +
                def instantiate_pretrained(self, config):
         
     | 
| 1041 | 
         
            +
                    model = instantiate_from_config(config)
         
     | 
| 1042 | 
         
            +
                    self.pretrained_model = model.eval()
         
     | 
| 1043 | 
         
            +
                    # self.pretrained_model.train = False
         
     | 
| 1044 | 
         
            +
                    for param in self.pretrained_model.parameters():
         
     | 
| 1045 | 
         
            +
                        param.requires_grad = False
         
     | 
| 1046 | 
         
            +
             
     | 
| 1047 | 
         
            +
                @torch.no_grad()
         
     | 
| 1048 | 
         
            +
                def encode_with_pretrained(self, x):
         
     | 
| 1049 | 
         
            +
                    c = self.pretrained_model.encode(x)
         
     | 
| 1050 | 
         
            +
                    if isinstance(c, DiagonalGaussianDistribution):
         
     | 
| 1051 | 
         
            +
                        c = c.mode()
         
     | 
| 1052 | 
         
            +
                    return c
         
     | 
| 1053 | 
         
            +
             
     | 
| 1054 | 
         
            +
                def forward(self, x):
         
     | 
| 1055 | 
         
            +
                    z_fs = self.encode_with_pretrained(x)
         
     | 
| 1056 | 
         
            +
                    z = self.proj_norm(z_fs)
         
     | 
| 1057 | 
         
            +
                    z = self.proj(z)
         
     | 
| 1058 | 
         
            +
                    z = nonlinearity(z)
         
     | 
| 1059 | 
         
            +
             
     | 
| 1060 | 
         
            +
                    for submodel, downmodel in zip(self.model, self.downsampler):
         
     | 
| 1061 | 
         
            +
                        z = submodel(z, temb=None)
         
     | 
| 1062 | 
         
            +
                        z = downmodel(z)
         
     | 
| 1063 | 
         
            +
             
     | 
| 1064 | 
         
            +
                    if self.do_reshape:
         
     | 
| 1065 | 
         
            +
                        z = rearrange(z, "b c h w -> b (h w) c")
         
     | 
| 1066 | 
         
            +
                    return z
         
     | 
    	
        diffusers/CITATION.cff
    ADDED
    
    | 
         @@ -0,0 +1,40 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            cff-version: 1.2.0
         
     | 
| 2 | 
         
            +
            title: 'Diffusers: State-of-the-art diffusion models'
         
     | 
| 3 | 
         
            +
            message: >-
         
     | 
| 4 | 
         
            +
              If you use this software, please cite it using the
         
     | 
| 5 | 
         
            +
              metadata from this file.
         
     | 
| 6 | 
         
            +
            type: software
         
     | 
| 7 | 
         
            +
            authors:
         
     | 
| 8 | 
         
            +
              - given-names: Patrick
         
     | 
| 9 | 
         
            +
                family-names: von Platen
         
     | 
| 10 | 
         
            +
              - given-names: Suraj
         
     | 
| 11 | 
         
            +
                family-names: Patil
         
     | 
| 12 | 
         
            +
              - given-names: Anton
         
     | 
| 13 | 
         
            +
                family-names: Lozhkov
         
     | 
| 14 | 
         
            +
              - given-names: Pedro
         
     | 
| 15 | 
         
            +
                family-names: Cuenca
         
     | 
| 16 | 
         
            +
              - given-names: Nathan
         
     | 
| 17 | 
         
            +
                family-names: Lambert
         
     | 
| 18 | 
         
            +
              - given-names: Kashif
         
     | 
| 19 | 
         
            +
                family-names: Rasul
         
     | 
| 20 | 
         
            +
              - given-names: Mishig
         
     | 
| 21 | 
         
            +
                family-names: Davaadorj
         
     | 
| 22 | 
         
            +
              - given-names: Thomas
         
     | 
| 23 | 
         
            +
                family-names: Wolf
         
     | 
| 24 | 
         
            +
            repository-code: 'https://github.com/huggingface/diffusers'
         
     | 
| 25 | 
         
            +
            abstract: >-
         
     | 
| 26 | 
         
            +
              Diffusers provides pretrained diffusion models across
         
     | 
| 27 | 
         
            +
              multiple modalities, such as vision and audio, and serves
         
     | 
| 28 | 
         
            +
              as a modular toolbox for inference and training of
         
     | 
| 29 | 
         
            +
              diffusion models.
         
     | 
| 30 | 
         
            +
            keywords:
         
     | 
| 31 | 
         
            +
              - deep-learning
         
     | 
| 32 | 
         
            +
              - pytorch
         
     | 
| 33 | 
         
            +
              - image-generation
         
     | 
| 34 | 
         
            +
              - diffusion
         
     | 
| 35 | 
         
            +
              - text2image
         
     | 
| 36 | 
         
            +
              - image2image
         
     | 
| 37 | 
         
            +
              - score-based-generative-modeling
         
     | 
| 38 | 
         
            +
              - stable-diffusion
         
     | 
| 39 | 
         
            +
            license: Apache-2.0
         
     | 
| 40 | 
         
            +
            version: 0.12.1
         
     | 
    	
        diffusers/CODE_OF_CONDUCT.md
    ADDED
    
    | 
         @@ -0,0 +1,130 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
             
     | 
| 2 | 
         
            +
            # Contributor Covenant Code of Conduct
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            ## Our Pledge
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            We as members, contributors, and leaders pledge to make participation in our
         
     | 
| 7 | 
         
            +
            community a harassment-free experience for everyone, regardless of age, body
         
     | 
| 8 | 
         
            +
            size, visible or invisible disability, ethnicity, sex characteristics, gender
         
     | 
| 9 | 
         
            +
            identity and expression, level of experience, education, socio-economic status,
         
     | 
| 10 | 
         
            +
            nationality, personal appearance, race, religion, or sexual identity
         
     | 
| 11 | 
         
            +
            and orientation.
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            We pledge to act and interact in ways that contribute to an open, welcoming,
         
     | 
| 14 | 
         
            +
            diverse, inclusive, and healthy community.
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            ## Our Standards
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            Examples of behavior that contributes to a positive environment for our
         
     | 
| 19 | 
         
            +
            community include:
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            * Demonstrating empathy and kindness toward other people
         
     | 
| 22 | 
         
            +
            * Being respectful of differing opinions, viewpoints, and experiences
         
     | 
| 23 | 
         
            +
            * Giving and gracefully accepting constructive feedback
         
     | 
| 24 | 
         
            +
            * Accepting responsibility and apologizing to those affected by our mistakes,
         
     | 
| 25 | 
         
            +
              and learning from the experience
         
     | 
| 26 | 
         
            +
            * Focusing on what is best not just for us as individuals, but for the
         
     | 
| 27 | 
         
            +
              overall diffusers community
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            Examples of unacceptable behavior include:
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            * The use of sexualized language or imagery, and sexual attention or
         
     | 
| 32 | 
         
            +
              advances of any kind
         
     | 
| 33 | 
         
            +
            * Trolling, insulting or derogatory comments, and personal or political attacks
         
     | 
| 34 | 
         
            +
            * Public or private harassment
         
     | 
| 35 | 
         
            +
            * Publishing others' private information, such as a physical or email
         
     | 
| 36 | 
         
            +
              address, without their explicit permission
         
     | 
| 37 | 
         
            +
            * Spamming issues or PRs with links to projects unrelated to this library
         
     | 
| 38 | 
         
            +
            * Other conduct which could reasonably be considered inappropriate in a
         
     | 
| 39 | 
         
            +
              professional setting
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            ## Enforcement Responsibilities
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            Community leaders are responsible for clarifying and enforcing our standards of
         
     | 
| 44 | 
         
            +
            acceptable behavior and will take appropriate and fair corrective action in
         
     | 
| 45 | 
         
            +
            response to any behavior that they deem inappropriate, threatening, offensive,
         
     | 
| 46 | 
         
            +
            or harmful.
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            Community leaders have the right and responsibility to remove, edit, or reject
         
     | 
| 49 | 
         
            +
            comments, commits, code, wiki edits, issues, and other contributions that are
         
     | 
| 50 | 
         
            +
            not aligned to this Code of Conduct, and will communicate reasons for moderation
         
     | 
| 51 | 
         
            +
            decisions when appropriate.
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
            ## Scope
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
            This Code of Conduct applies within all community spaces, and also applies when
         
     | 
| 56 | 
         
            +
            an individual is officially representing the community in public spaces.
         
     | 
| 57 | 
         
            +
            Examples of representing our community include using an official e-mail address,
         
     | 
| 58 | 
         
            +
            posting via an official social media account, or acting as an appointed
         
     | 
| 59 | 
         
            +
            representative at an online or offline event.
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            ## Enforcement
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
            Instances of abusive, harassing, or otherwise unacceptable behavior may be
         
     | 
| 64 | 
         
            +
            reported to the community leaders responsible for enforcement at
         
     | 
| 65 | 
         
            +
            feedback@huggingface.co.
         
     | 
| 66 | 
         
            +
            All complaints will be reviewed and investigated promptly and fairly.
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
            All community leaders are obligated to respect the privacy and security of the
         
     | 
| 69 | 
         
            +
            reporter of any incident.
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            ## Enforcement Guidelines
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            Community leaders will follow these Community Impact Guidelines in determining
         
     | 
| 74 | 
         
            +
            the consequences for any action they deem in violation of this Code of Conduct:
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
            ### 1. Correction
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
            **Community Impact**: Use of inappropriate language or other behavior deemed
         
     | 
| 79 | 
         
            +
            unprofessional or unwelcome in the community.
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
            **Consequence**: A private, written warning from community leaders, providing
         
     | 
| 82 | 
         
            +
            clarity around the nature of the violation and an explanation of why the
         
     | 
| 83 | 
         
            +
            behavior was inappropriate. A public apology may be requested.
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
            ### 2. Warning
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
            **Community Impact**: A violation through a single incident or series
         
     | 
| 88 | 
         
            +
            of actions.
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
            **Consequence**: A warning with consequences for continued behavior. No
         
     | 
| 91 | 
         
            +
            interaction with the people involved, including unsolicited interaction with
         
     | 
| 92 | 
         
            +
            those enforcing the Code of Conduct, for a specified period of time. This
         
     | 
| 93 | 
         
            +
            includes avoiding interactions in community spaces as well as external channels
         
     | 
| 94 | 
         
            +
            like social media. Violating these terms may lead to a temporary or
         
     | 
| 95 | 
         
            +
            permanent ban.
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
            ### 3. Temporary Ban
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
            **Community Impact**: A serious violation of community standards, including
         
     | 
| 100 | 
         
            +
            sustained inappropriate behavior.
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
            **Consequence**: A temporary ban from any sort of interaction or public
         
     | 
| 103 | 
         
            +
            communication with the community for a specified period of time. No public or
         
     | 
| 104 | 
         
            +
            private interaction with the people involved, including unsolicited interaction
         
     | 
| 105 | 
         
            +
            with those enforcing the Code of Conduct, is allowed during this period.
         
     | 
| 106 | 
         
            +
            Violating these terms may lead to a permanent ban.
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
            ### 4. Permanent Ban
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
            **Community Impact**: Demonstrating a pattern of violation of community
         
     | 
| 111 | 
         
            +
            standards, including sustained inappropriate behavior,  harassment of an
         
     | 
| 112 | 
         
            +
            individual, or aggression toward or disparagement of classes of individuals.
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
            **Consequence**: A permanent ban from any sort of public interaction within
         
     | 
| 115 | 
         
            +
            the community.
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
            ## Attribution
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
            This Code of Conduct is adapted from the [Contributor Covenant][homepage],
         
     | 
| 120 | 
         
            +
            version 2.0, available at
         
     | 
| 121 | 
         
            +
            https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
            Community Impact Guidelines were inspired by [Mozilla's code of conduct
         
     | 
| 124 | 
         
            +
            enforcement ladder](https://github.com/mozilla/diversity).
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
            [homepage]: https://www.contributor-covenant.org
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
            For answers to common questions about this code of conduct, see the FAQ at
         
     | 
| 129 | 
         
            +
            https://www.contributor-covenant.org/faq. Translations are available at
         
     | 
| 130 | 
         
            +
            https://www.contributor-covenant.org/translations.
         
     |