ChatWithTranscriptDev / crop_utils.py
AhmadMustafa's picture
Merge branch 'main' of https://huggingface.co/spaces/RollAI/ChatWithTranscriptDev
e6e5fc7
raw
history blame
30.6 kB
import base64
import os
from io import BytesIO
import cv2
import gradio as gr
import numpy as np
import pyrebase
import requests
from openai import OpenAI
from PIL import Image, ImageDraw, ImageFont
from prompts import remove_unwanted_prompt
from ultralytics import YOLO
model = YOLO("yolo11n.pt")
def get_middle_thumbnail(input_image: Image, grid_size=(10, 10), padding=3):
"""
Extract the middle thumbnail from a sprite sheet, handling different aspect ratios
and removing padding.
Args:
input_image: PIL Image
grid_size: Tuple of (columns, rows)
padding: Number of padding pixels on each side (default 3)
Returns:
PIL.Image: The middle thumbnail image with padding removed
"""
sprite_sheet = input_image
# Calculate thumbnail dimensions based on actual sprite sheet size
sprite_width, sprite_height = sprite_sheet.size
thumb_width_with_padding = sprite_width // grid_size[0]
thumb_height_with_padding = sprite_height // grid_size[1]
# Remove padding to get actual image dimensions
thumb_width = thumb_width_with_padding - (2 * padding) # 726 - 6 = 720
thumb_height = thumb_height_with_padding - (2 * padding) # varies based on input
# Calculate the middle position
total_thumbs = grid_size[0] * grid_size[1]
middle_index = total_thumbs // 2
# Calculate row and column of middle thumbnail
middle_row = middle_index // grid_size[0]
middle_col = middle_index % grid_size[0]
# Calculate pixel coordinates for cropping, including padding offset
left = (middle_col * thumb_width_with_padding) + padding
top = (middle_row * thumb_height_with_padding) + padding
right = left + thumb_width # Don't add padding here
bottom = top + thumb_height # Don't add padding here
# Crop and return the middle thumbnail
middle_thumb = sprite_sheet.crop((left, top, right, bottom))
return middle_thumb
def encode_image_to_base64(image: Image.Image, format: str = "JPEG") -> str:
"""
Convert a PIL image to a base64 string.
Args:
image: PIL Image object
format: Image format to use for encoding (default: PNG)
Returns:
Base64 encoded string of the image
"""
buffered = BytesIO()
image.save(buffered, format=format)
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def add_top_numbers(
input_image,
num_divisions=20,
margin=90,
font_size=120,
dot_spacing=20,
):
"""
Add numbered divisions across the top and bottom of any image with dotted vertical lines.
Args:
input_image (Image): PIL Image
num_divisions (int): Number of divisions to create
margin (int): Size of margin in pixels for numbers
font_size (int): Font size for numbers
dot_spacing (int): Spacing between dots in pixels
"""
# Load the image
original_image = input_image
# Create new image with extra space for numbers on top and bottom
new_width = original_image.width
new_height = original_image.height + (
2 * margin
) # Add margin to both top and bottom
new_image = Image.new("RGB", (new_width, new_height), "white")
# Paste original image in the middle
new_image.paste(original_image, (0, margin))
# Initialize drawing context
draw = ImageDraw.Draw(new_image)
try:
font = ImageFont.truetype("arial.ttf", font_size)
except OSError:
print("Using default font")
font = ImageFont.load_default(size=font_size)
# Calculate division width
division_width = original_image.width / num_divisions
# Draw division numbers and dotted lines
for i in range(num_divisions):
x = (i * division_width) + (division_width / 2)
# Draw number at top
draw.text((x, margin // 2), str(i + 1), fill="black", font=font, anchor="mm")
# Draw number at bottom
draw.text(
(x, new_height - (margin // 2)),
str(i + 1),
fill="black",
font=font,
anchor="mm",
)
# Draw dotted line from top margin to bottom margin
y_start = margin
y_end = new_height - margin
# Draw dots with specified spacing
current_y = y_start
while current_y < y_end:
draw.circle(
[x - 1, current_y - 1, x + 1, current_y + 1],
fill="black",
width=5,
radius=3,
)
current_y += dot_spacing
return new_image
def crop_and_draw_divisions(
input_image,
left_division,
right_division,
num_divisions=20,
line_color=(255, 0, 0),
line_width=2,
head_margin_percent=0.1,
):
"""
Create both 9:16 and 16:9 crops and draw guide lines.
Args:
input_image (Image): PIL Image
left_division (int): Left-side division number (1-20)
right_division (int): Right-side division number (1-20)
num_divisions (int): Total number of divisions (default=20)
line_color (tuple): RGB color tuple for lines (default: red)
line_width (int): Width of lines in pixels (default: 2)
head_margin_percent (float): Percentage margin above head (default: 0.1)
Returns:
tuple: (cropped_image_16_9, image_with_lines, cropped_image_9_16)
"""
yolo_model = YOLO("yolo11n.pt")
# Calculate division width and boundaries
division_width = input_image.width / num_divisions
left_boundary = (left_division - 1) * division_width
right_boundary = right_division * division_width
# First get the 9:16 crop
cropped_image_9_16 = input_image.crop(
(left_boundary, 0, right_boundary, input_image.height)
)
# Run YOLO on the 9:16 crop to get person bbox
bbox = yolo_model(cropped_image_9_16, classes=[0])[0].boxes.xyxy.cpu().numpy()[0]
x1, y1, x2, y2 = bbox
# Calculate top boundary with head margin
head_margin = (y2 - y1) * head_margin_percent
top_boundary = max(0, y1 - head_margin)
# Calculate 16:9 dimensions based on the width between divisions
crop_width = right_boundary - left_boundary
crop_height_16_9 = int(crop_width * 9 / 16)
# Calculate bottom boundary for 16:9
bottom_boundary = min(input_image.height, top_boundary + crop_height_16_9)
# Create 16:9 crop from original image
cropped_image_16_9 = input_image.crop(
(left_boundary, top_boundary, right_boundary, bottom_boundary)
)
# Draw guide lines for both crops on original image
image_with_lines = input_image.copy()
draw = ImageDraw.Draw(image_with_lines)
# Draw vertical lines (for both crops)
draw.line(
[(left_boundary, 0), (left_boundary, input_image.height)],
fill=line_color,
width=line_width,
)
draw.line(
[(right_boundary, 0), (right_boundary, input_image.height)],
fill=line_color,
width=line_width,
)
# Draw horizontal lines (for 16:9 crop)
draw.line(
[(left_boundary, top_boundary), (right_boundary, top_boundary)],
fill=line_color,
width=line_width,
)
draw.line(
[(left_boundary, bottom_boundary), (right_boundary, bottom_boundary)],
fill=line_color,
width=line_width,
)
return cropped_image_16_9, image_with_lines, cropped_image_9_16
def analyze_image(numbered_input_image: Image, prompt, input_image):
"""
Perform inference on an image using GPT-4V.
Args:
numbered_input_image (Image): PIL Image
prompt (str): The prompt/question about the image
input_image (Image): input image without numbers
Returns:
str: The model's response
"""
client = OpenAI()
base64_image = encode_image_to_base64(numbered_input_image, format="JPEG")
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
},
],
}
]
response = client.chat.completions.create(
model="gpt-4o", messages=messages, max_tokens=300
)
messages.extend(
[
{"role": "assistant", "content": response.choices[0].message.content},
{
"role": "user",
"content": "please return the response in the json with keys left_row and right_row",
},
],
)
response = (
client.chat.completions.create(model="gpt-4o", messages=messages)
.choices[0]
.message.content
)
left_index = response.find("{")
right_index = response.rfind("}")
try:
if left_index != -1 and right_index != -1:
response_json = eval(response[left_index : right_index + 1])
cropped_image_16_9, image_with_lines, cropped_image_9_16 = (
crop_and_draw_divisions(
input_image=input_image,
left_division=response_json["left_row"],
right_division=response_json["right_row"],
)
)
except Exception as e:
print(e)
return input_image, input_image, input_image, 0, 20
return (
cropped_image_16_9,
image_with_lines,
cropped_image_9_16,
response_json["left_row"],
response_json["right_row"],
)
def get_sprite_firebase(cid, rsid, uid):
config = {
"apiKey": f"{os.getenv('FIREBASE_API_KEY')}",
"authDomain": f"{os.getenv('FIREBASE_AUTH_DOMAIN')}",
"databaseURL": f"{os.getenv('FIREBASE_DATABASE_URL')}",
"projectId": f"{os.getenv('FIREBASE_PROJECT_ID')}",
"storageBucket": f"{os.getenv('FIREBASE_STORAGE_BUCKET')}",
"messagingSenderId": f"{os.getenv('FIREBASE_MESSAGING_SENDER_ID')}",
"appId": f"{os.getenv('FIREBASE_APP_ID')}",
"measurementId": f"{os.getenv('FIREBASE_MEASUREMENT_ID')}",
}
firebase = pyrebase.initialize_app(config)
db = firebase.database()
account_id = os.getenv("ROLL_ACCOUNT")
COLLAB_EDIT_LINK = "collab_sprite_link_handler"
path = f"{account_id}/{COLLAB_EDIT_LINK}/{uid}/{cid}/{rsid}"
data = db.child(path).get()
return data.val()
def find_persons_center(image):
"""
Find the center point of all persons in the image.
If multiple persons are detected, merge all bounding boxes and find the center.
Args:
image: CV2/numpy array image
Returns:
int: x-coordinate of the center point of all persons
"""
# Detect persons (class 0 in COCO dataset)
results = model(image, classes=[0])
if not results or len(results[0].boxes) == 0:
# If no persons detected, return center of image
return image.shape[1] // 2
# Get all person boxes
boxes = results[0].boxes.xyxy.cpu().numpy()
# Print the number of persons detected (for debugging)
print(f"Detected {len(boxes)} persons in the image")
if len(boxes) == 1:
# If only one person, return center of their bounding box
x1, _, x2, _ = boxes[0]
center_x = int((x1 + x2) // 2)
print(f"Single person detected at center x: {center_x}")
return center_x
else:
# Multiple persons - create a merged bounding box
left_x = min(box[0] for box in boxes)
right_x = max(box[2] for box in boxes)
merged_center_x = int((left_x + right_x) // 2)
print(f"Multiple persons merged bounding box center x: {merged_center_x}")
print(f"Merged bounds: left={left_x}, right={right_x}")
return merged_center_x
def create_layouts(image, left_division, right_division):
"""
Create different layout variations of the image using half, one-third, and two-thirds width.
All layout variations will be centered on detected persons, including 16:9 and 9:16 crops.
Args:
image: PIL Image
left_division: Left division index (1-20)
right_division: Right division index (1-20)
Returns:
tuple: (list of layout variations, cutout_image, cutout_16_9, cutout_9_16)
"""
# Convert PIL Image to cv2 format
if isinstance(image, Image.Image):
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
else:
image_cv = image.copy()
# Get image dimensions
height, width = image_cv.shape[:2]
# Calculate division width and crop boundaries
division_width = width / 20 # Assuming 20 divisions
left_boundary = int((left_division - 1) * division_width)
right_boundary = int(right_division * division_width)
# 1. Create cutout image based on divisions
cutout_image = image_cv[:, left_boundary:right_boundary].copy()
cutout_width = right_boundary - left_boundary
cutout_height = cutout_image.shape[0]
# 2. Run YOLO on cutout to get person bounding box and center
results = model(cutout_image, classes=[0])
# Default center if no detection
cutout_center_x = cutout_image.shape[1] // 2
cutout_center_y = cutout_height // 2
# Default values for bounding box
person_top = 0.0
person_height = float(cutout_height)
if results and len(results[0].boxes) > 0:
# Get person detection
boxes = results[0].boxes.xyxy.cpu().numpy()
if len(boxes) == 1:
# Single person
x1, y1, x2, y2 = boxes[0]
cutout_center_x = int((x1 + x2) // 2)
cutout_center_y = int((y1 + y2) // 2)
person_top = y1
person_height = y2 - y1
else:
# Multiple persons - merge bounding boxes
left_x = min(box[0] for box in boxes)
right_x = max(box[2] for box in boxes)
top_y = min(box[1] for box in boxes) # Top of highest person
bottom_y = max(box[3] for box in boxes) # Bottom of lowest person
cutout_center_x = int((left_x + right_x) // 2)
cutout_center_y = int((top_y + bottom_y) // 2)
person_top = top_y
person_height = bottom_y - top_y
# 3. Create 16:9 and 9:16 versions with person properly framed
aspect_16_9 = 16 / 9
aspect_9_16 = 9 / 16
# For 16:9 version (with 20% margin above person)
target_height_16_9 = int(cutout_width / aspect_16_9)
if target_height_16_9 <= cutout_height:
# Calculate 20% of person height for top margin
top_margin = int(person_height * 0.2)
# Start 20% above the person's top
y_start = int(max(0, person_top - top_margin))
# If this would make the crop exceed the bottom, adjust y_start
if y_start + target_height_16_9 > cutout_height:
y_start = int(max(0, cutout_height - target_height_16_9))
y_end = int(min(cutout_height, y_start + target_height_16_9))
cutout_16_9 = cutout_image[y_start:y_end, :].copy()
else:
# Handle rare case where we need to adjust width (not expected with normal images)
new_width = int(cutout_height * aspect_16_9)
x_start = max(
0, min(cutout_width - new_width, cutout_center_x - new_width // 2)
)
x_end = min(cutout_width, x_start + new_width)
cutout_16_9 = cutout_image[:, x_start:x_end].copy()
# For 9:16 version (centered on person)
target_width_9_16 = int(cutout_height * aspect_9_16)
if target_width_9_16 <= cutout_width:
# Center horizontally around person
x_start = int(
max(
0,
min(
cutout_width - target_width_9_16,
cutout_center_x - target_width_9_16 // 2,
),
)
)
x_end = int(min(cutout_width, x_start + target_width_9_16))
cutout_9_16 = cutout_image[:, x_start:x_end].copy()
else:
# Handle rare case where we need to adjust height
new_height = int(cutout_width / aspect_9_16)
y_start = int(
max(0, min(cutout_height - new_height, cutout_center_y - new_height // 2))
)
y_end = int(min(cutout_height, y_start + new_height))
cutout_9_16 = cutout_image[y_start:y_end, :].copy()
# 4. Scale the center back to original image coordinates
original_center_x = left_boundary + cutout_center_x
# 5. Create layout variations on the original image centered on persons
# Half width layout
half_width = width // 2
half_left_x = max(0, min(width - half_width, original_center_x - half_width // 2))
half_right_x = half_left_x + half_width
half_width_crop = image_cv[:, half_left_x:half_right_x].copy()
# Third width layout
third_width = width // 3
third_left_x = max(
0, min(width - third_width, original_center_x - third_width // 2)
)
third_right_x = third_left_x + third_width
third_width_crop = image_cv[:, third_left_x:third_right_x].copy()
# Two-thirds width layout
two_thirds_width = (width * 2) // 3
two_thirds_left_x = max(
0, min(width - two_thirds_width, original_center_x - two_thirds_width // 2)
)
two_thirds_right_x = two_thirds_left_x + two_thirds_width
two_thirds_crop = image_cv[:, two_thirds_left_x:two_thirds_right_x].copy()
# Add labels to all crops
font = cv2.FONT_HERSHEY_SIMPLEX
label_settings = {
"fontScale": 1.0,
"fontFace": 1,
"thickness": 2,
}
# Draw label backgrounds for better visibility
def add_label(img, label):
# Draw background for text
text_size = cv2.getTextSize(
label, **{k: v for k, v in label_settings.items() if k != "color"}
)
cv2.rectangle(
img,
(10, 10),
(10 + text_size[0][0] + 10, 10 + text_size[0][1] + 10),
(0, 0, 0),
-1,
) # Black background
# Draw text
cv2.putText(
img,
label,
(15, 15 + text_size[0][1]),
**label_settings,
color=(255, 255, 255),
lineType=cv2.LINE_AA,
)
return img
cutout_image = add_label(cutout_image, "Cutout")
cutout_16_9 = add_label(cutout_16_9, "16:9")
cutout_9_16 = add_label(cutout_9_16, "9:16")
half_width_crop = add_label(half_width_crop, "Half Width")
third_width_crop = add_label(third_width_crop, "Third Width")
two_thirds_crop = add_label(two_thirds_crop, "Two-Thirds Width")
# Convert all output images to PIL format
layout_crops = []
for layout, label in [
(half_width_crop, "Half Width"),
(third_width_crop, "Third Width"),
(two_thirds_crop, "Two-Thirds Width"),
]:
pil_layout = Image.fromarray(cv2.cvtColor(layout, cv2.COLOR_BGR2RGB))
layout_crops.append(pil_layout)
cutout_pil = Image.fromarray(cv2.cvtColor(cutout_image, cv2.COLOR_BGR2RGB))
cutout_16_9_pil = Image.fromarray(cv2.cvtColor(cutout_16_9, cv2.COLOR_BGR2RGB))
cutout_9_16_pil = Image.fromarray(cv2.cvtColor(cutout_9_16, cv2.COLOR_BGR2RGB))
return layout_crops, cutout_pil, cutout_16_9_pil, cutout_9_16_pil
def draw_all_crops_on_original(image, left_division, right_division):
"""
Create a visualization showing all crop regions overlaid on the original image.
Each crop region is outlined with a different color and labeled.
All crops are centered on the person's center point.
Args:
image: PIL Image
left_division: Left division index (1-20)
right_division: Right division index (1-20)
Returns:
PIL Image: Original image with all crop regions visualized
"""
# Convert PIL Image to cv2 format
if isinstance(image, Image.Image):
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
else:
image_cv = image.copy()
# Get a clean copy for drawing
visualization = image_cv.copy()
# Get image dimensions
height, width = image_cv.shape[:2]
# Calculate division width and crop boundaries
division_width = width / 20 # Assuming 20 divisions
left_boundary = int((left_division - 1) * division_width)
right_boundary = int(right_division * division_width)
# Find person bounding box and center in cutout
cutout_image = image_cv[:, left_boundary:right_boundary].copy()
# Get YOLO detections for person bounding box
results = model(cutout_image, classes=[0])
# Default values
cutout_center_x = cutout_image.shape[1] // 2
cutout_center_y = cutout_image.shape[0] // 2
person_top = 0.0
person_height = float(cutout_image.shape[0])
if results and len(results[0].boxes) > 0:
# Get person detection
boxes = results[0].boxes.xyxy.cpu().numpy()
if len(boxes) == 1:
# Single person
x1, y1, x2, y2 = boxes[0]
cutout_center_x = int((x1 + x2) // 2)
cutout_center_y = int((y1 + y2) // 2)
person_top = y1
person_height = y2 - y1
else:
# Multiple persons - merge bounding boxes
left_x = min(box[0] for box in boxes)
right_x = max(box[2] for box in boxes)
top_y = min(box[1] for box in boxes) # Top of highest person
bottom_y = max(box[3] for box in boxes) # Bottom of lowest person
cutout_center_x = int((left_x + right_x) // 2)
cutout_center_y = int((top_y + bottom_y) // 2)
person_top = top_y
person_height = bottom_y - top_y
# Scale back to original image
original_center_x = left_boundary + cutout_center_x
original_center_y = cutout_center_y
original_person_top = (
person_top # Already in original image space since we didn't crop vertically
)
original_person_height = person_height # Same in original space
# Define colors for different crops (BGR format)
colors = {
"cutout": (0, 165, 255), # Orange
"16:9": (0, 255, 0), # Green
"9:16": (255, 0, 0), # Blue
"half": (255, 255, 0), # Cyan
"third": (255, 0, 255), # Magenta
"two_thirds": (0, 255, 255), # Yellow
}
# Define line thickness and font
thickness = 3
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.8
font_thickness = 2
# 1. Draw cutout region (original divisions)
cv2.rectangle(
visualization,
(left_boundary, 0),
(right_boundary, height),
colors["cutout"],
thickness,
)
cv2.putText(
visualization,
"Cutout",
(left_boundary + 5, 30),
font,
font_scale,
colors["cutout"],
font_thickness,
)
# 2. Create 16:9 and 9:16 versions of the cutout - CENTERED on person
cutout_width = right_boundary - left_boundary
cutout_height = height
# For 16:9 version with 20% margin above person
aspect_16_9 = 16 / 9
target_height_16_9 = int(cutout_width / aspect_16_9)
if target_height_16_9 <= height:
# Calculate 20% of person height for top margin
top_margin = int(original_person_height * 0.2)
# Start 20% above the person's top
y_start = int(max(0, original_person_top - top_margin))
# If this would make the crop exceed the bottom, adjust y_start
if y_start + target_height_16_9 > height:
y_start = int(max(0, height - target_height_16_9))
y_end = int(min(height, y_start + target_height_16_9))
cv2.rectangle(
visualization,
(left_boundary, y_start),
(right_boundary, y_end),
colors["16:9"],
thickness,
)
cv2.putText(
visualization,
"16:9",
(left_boundary + 5, y_start + 30),
font,
font_scale,
colors["16:9"],
font_thickness,
)
# For 9:16 version centered on person
aspect_9_16 = 9 / 16
target_width_9_16 = int(cutout_height * aspect_9_16)
if target_width_9_16 <= cutout_width:
# Center horizontally around person
x_start = max(
0,
min(
left_boundary + cutout_width - target_width_9_16,
original_center_x - target_width_9_16 // 2,
),
)
x_end = x_start + target_width_9_16
cv2.rectangle(
visualization, (x_start, 0), (x_end, height), colors["9:16"], thickness
)
cv2.putText(
visualization,
"9:16",
(x_start + 5, 60),
font,
font_scale,
colors["9:16"],
font_thickness,
)
# 3. Draw centered layout variations
# Half width layout
half_width = width // 2
half_left_x = max(0, min(width - half_width, original_center_x - half_width // 2))
half_right_x = half_left_x + half_width
cv2.rectangle(
visualization,
(half_left_x, 0),
(half_right_x, height),
colors["half"],
thickness,
)
cv2.putText(
visualization,
"Half Width",
(half_left_x + 5, 90),
font,
font_scale,
colors["half"],
font_thickness,
)
# Third width layout
third_width = width // 3
third_left_x = max(
0, min(width - third_width, original_center_x - third_width // 2)
)
third_right_x = third_left_x + third_width
cv2.rectangle(
visualization,
(third_left_x, 0),
(third_right_x, height),
colors["third"],
thickness,
)
cv2.putText(
visualization,
"Third Width",
(third_left_x + 5, 120),
font,
font_scale,
colors["third"],
font_thickness,
)
# Two-thirds width layout
two_thirds_width = (width * 2) // 3
two_thirds_left_x = max(
0, min(width - two_thirds_width, original_center_x - two_thirds_width // 2)
)
two_thirds_right_x = two_thirds_left_x + two_thirds_width
cv2.rectangle(
visualization,
(two_thirds_left_x, 0),
(two_thirds_right_x, height),
colors["two_thirds"],
thickness,
)
cv2.putText(
visualization,
"Two-Thirds Width",
(two_thirds_left_x + 5, 150),
font,
font_scale,
colors["two_thirds"],
font_thickness,
)
# 4. Draw center point of person(s)
center_radius = 8
cv2.circle(
visualization,
(original_center_x, height // 2),
center_radius,
(255, 255, 255),
-1,
)
cv2.circle(
visualization, (original_center_x, height // 2), center_radius, (0, 0, 0), 2
)
cv2.putText(
visualization,
"Person Center",
(original_center_x + 10, height // 2),
font,
font_scale,
(255, 255, 255),
font_thickness,
)
# Convert back to PIL format
visualization_pil = Image.fromarray(cv2.cvtColor(visualization, cv2.COLOR_BGR2RGB))
return visualization_pil
def get_image_crop(cid=None, rsid=None, uid=None):
"""
Function that returns both 16:9 and 9:16 crops and layout variations for visualization.
Returns:
gr.Gallery: Gallery of all generated images
"""
# Uncomment this line when using Firebase
# image_paths = get_sprite_firebase(cid, rsid, uid)
# For testing, use a local image path
image_paths = ["sprite1.jpg", "sprite2.jpg"]
# Lists to store all images
all_images = []
all_captions = []
for image_path in image_paths:
# Load image (from local file or URL)
try:
if image_path.startswith(("http://", "https://")):
response = requests.get(image_path)
input_image = Image.open(BytesIO(response.content))
else:
input_image = Image.open(image_path)
except Exception as e:
print(f"Error loading image {image_path}: {e}")
continue
# Get the middle thumbnail
mid_image = get_middle_thumbnail(input_image)
# Add numbered divisions for GPT-4V analysis
numbered_mid_image = add_top_numbers(
input_image=mid_image,
num_divisions=20,
margin=50,
font_size=30,
dot_spacing=20,
)
# Analyze the image to get optimal crop divisions
# This uses GPT-4V to identify the optimal crop points
(
_,
_,
_,
left_division,
right_division,
) = analyze_image(numbered_mid_image, remove_unwanted_prompt(2), mid_image)
# Safety check for divisions
if left_division <= 0:
left_division = 1
if right_division > 20:
right_division = 20
if left_division >= right_division:
left_division = 1
right_division = 20
print(f"Using divisions: left={left_division}, right={right_division}")
# Create layouts and cutouts
layouts, cutout_image, cutout_16_9, cutout_9_16 = create_layouts(
mid_image, left_division, right_division
)
# Create the visualization with all crops overlaid on original
all_crops_visualization = draw_all_crops_on_original(
mid_image, left_division, right_division
)
# Start with the visualization showing all crops
all_images.append(all_crops_visualization)
all_captions.append(f"All Crops Visualization {all_crops_visualization.size}")
# Add input and middle image to gallery
all_images.append(input_image)
all_captions.append(f"Input Image {input_image.size}")
all_images.append(mid_image)
all_captions.append(f"Middle Thumbnail {mid_image.size}")
# Add cutout images to gallery
all_images.append(cutout_image)
all_captions.append(f"Cutout Image {cutout_image.size}")
all_images.append(cutout_16_9)
all_captions.append(f"16:9 Crop {cutout_16_9.size}")
all_images.append(cutout_9_16)
all_captions.append(f"9:16 Crop {cutout_9_16.size}")
# Add layout variations
for i, layout in enumerate(layouts):
label = ["Half Width", "Third Width", "Two-Thirds Width"][i]
all_images.append(layout)
all_captions.append(f"{label} {layout.size}")
# Return gallery with all images
return gr.Gallery(value=list(zip(all_images, all_captions)))