Spaces:
Running
Running
import base64 | |
import os | |
from io import BytesIO | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import pyrebase | |
import requests | |
from openai import OpenAI | |
from PIL import Image, ImageDraw, ImageFont | |
from prompts import remove_unwanted_prompt | |
from ultralytics import YOLO | |
model = YOLO("yolo11n.pt") | |
def get_middle_thumbnail(input_image: Image, grid_size=(10, 10), padding=3): | |
""" | |
Extract the middle thumbnail from a sprite sheet, handling different aspect ratios | |
and removing padding. | |
Args: | |
input_image: PIL Image | |
grid_size: Tuple of (columns, rows) | |
padding: Number of padding pixels on each side (default 3) | |
Returns: | |
PIL.Image: The middle thumbnail image with padding removed | |
""" | |
sprite_sheet = input_image | |
# Calculate thumbnail dimensions based on actual sprite sheet size | |
sprite_width, sprite_height = sprite_sheet.size | |
thumb_width_with_padding = sprite_width // grid_size[0] | |
thumb_height_with_padding = sprite_height // grid_size[1] | |
# Remove padding to get actual image dimensions | |
thumb_width = thumb_width_with_padding - (2 * padding) # 726 - 6 = 720 | |
thumb_height = thumb_height_with_padding - (2 * padding) # varies based on input | |
# Calculate the middle position | |
total_thumbs = grid_size[0] * grid_size[1] | |
middle_index = total_thumbs // 2 | |
# Calculate row and column of middle thumbnail | |
middle_row = middle_index // grid_size[0] | |
middle_col = middle_index % grid_size[0] | |
# Calculate pixel coordinates for cropping, including padding offset | |
left = (middle_col * thumb_width_with_padding) + padding | |
top = (middle_row * thumb_height_with_padding) + padding | |
right = left + thumb_width # Don't add padding here | |
bottom = top + thumb_height # Don't add padding here | |
# Crop and return the middle thumbnail | |
middle_thumb = sprite_sheet.crop((left, top, right, bottom)) | |
return middle_thumb | |
def encode_image_to_base64(image: Image.Image, format: str = "JPEG") -> str: | |
""" | |
Convert a PIL image to a base64 string. | |
Args: | |
image: PIL Image object | |
format: Image format to use for encoding (default: PNG) | |
Returns: | |
Base64 encoded string of the image | |
""" | |
buffered = BytesIO() | |
image.save(buffered, format=format) | |
return base64.b64encode(buffered.getvalue()).decode("utf-8") | |
def add_top_numbers( | |
input_image, | |
num_divisions=20, | |
margin=90, | |
font_size=120, | |
dot_spacing=20, | |
): | |
""" | |
Add numbered divisions across the top and bottom of any image with dotted vertical lines. | |
Args: | |
input_image (Image): PIL Image | |
num_divisions (int): Number of divisions to create | |
margin (int): Size of margin in pixels for numbers | |
font_size (int): Font size for numbers | |
dot_spacing (int): Spacing between dots in pixels | |
""" | |
# Load the image | |
original_image = input_image | |
# Create new image with extra space for numbers on top and bottom | |
new_width = original_image.width | |
new_height = original_image.height + ( | |
2 * margin | |
) # Add margin to both top and bottom | |
new_image = Image.new("RGB", (new_width, new_height), "white") | |
# Paste original image in the middle | |
new_image.paste(original_image, (0, margin)) | |
# Initialize drawing context | |
draw = ImageDraw.Draw(new_image) | |
try: | |
font = ImageFont.truetype("arial.ttf", font_size) | |
except OSError: | |
print("Using default font") | |
font = ImageFont.load_default(size=font_size) | |
# Calculate division width | |
division_width = original_image.width / num_divisions | |
# Draw division numbers and dotted lines | |
for i in range(num_divisions): | |
x = (i * division_width) + (division_width / 2) | |
# Draw number at top | |
draw.text((x, margin // 2), str(i + 1), fill="black", font=font, anchor="mm") | |
# Draw number at bottom | |
draw.text( | |
(x, new_height - (margin // 2)), | |
str(i + 1), | |
fill="black", | |
font=font, | |
anchor="mm", | |
) | |
# Draw dotted line from top margin to bottom margin | |
y_start = margin | |
y_end = new_height - margin | |
# Draw dots with specified spacing | |
current_y = y_start | |
while current_y < y_end: | |
draw.circle( | |
[x - 1, current_y - 1, x + 1, current_y + 1], | |
fill="black", | |
width=5, | |
radius=3, | |
) | |
current_y += dot_spacing | |
return new_image | |
def crop_and_draw_divisions( | |
input_image, | |
left_division, | |
right_division, | |
num_divisions=20, | |
line_color=(255, 0, 0), | |
line_width=2, | |
head_margin_percent=0.1, | |
): | |
""" | |
Create both 9:16 and 16:9 crops and draw guide lines. | |
Args: | |
input_image (Image): PIL Image | |
left_division (int): Left-side division number (1-20) | |
right_division (int): Right-side division number (1-20) | |
num_divisions (int): Total number of divisions (default=20) | |
line_color (tuple): RGB color tuple for lines (default: red) | |
line_width (int): Width of lines in pixels (default: 2) | |
head_margin_percent (float): Percentage margin above head (default: 0.1) | |
Returns: | |
tuple: (cropped_image_16_9, image_with_lines, cropped_image_9_16) | |
""" | |
yolo_model = YOLO("yolo11n.pt") | |
# Calculate division width and boundaries | |
division_width = input_image.width / num_divisions | |
left_boundary = (left_division - 1) * division_width | |
right_boundary = right_division * division_width | |
# First get the 9:16 crop | |
cropped_image_9_16 = input_image.crop( | |
(left_boundary, 0, right_boundary, input_image.height) | |
) | |
# Run YOLO on the 9:16 crop to get person bbox | |
bbox = yolo_model(cropped_image_9_16, classes=[0])[0].boxes.xyxy.cpu().numpy()[0] | |
x1, y1, x2, y2 = bbox | |
# Calculate top boundary with head margin | |
head_margin = (y2 - y1) * head_margin_percent | |
top_boundary = max(0, y1 - head_margin) | |
# Calculate 16:9 dimensions based on the width between divisions | |
crop_width = right_boundary - left_boundary | |
crop_height_16_9 = int(crop_width * 9 / 16) | |
# Calculate bottom boundary for 16:9 | |
bottom_boundary = min(input_image.height, top_boundary + crop_height_16_9) | |
# Create 16:9 crop from original image | |
cropped_image_16_9 = input_image.crop( | |
(left_boundary, top_boundary, right_boundary, bottom_boundary) | |
) | |
# Draw guide lines for both crops on original image | |
image_with_lines = input_image.copy() | |
draw = ImageDraw.Draw(image_with_lines) | |
# Draw vertical lines (for both crops) | |
draw.line( | |
[(left_boundary, 0), (left_boundary, input_image.height)], | |
fill=line_color, | |
width=line_width, | |
) | |
draw.line( | |
[(right_boundary, 0), (right_boundary, input_image.height)], | |
fill=line_color, | |
width=line_width, | |
) | |
# Draw horizontal lines (for 16:9 crop) | |
draw.line( | |
[(left_boundary, top_boundary), (right_boundary, top_boundary)], | |
fill=line_color, | |
width=line_width, | |
) | |
draw.line( | |
[(left_boundary, bottom_boundary), (right_boundary, bottom_boundary)], | |
fill=line_color, | |
width=line_width, | |
) | |
return cropped_image_16_9, image_with_lines, cropped_image_9_16 | |
def analyze_image(numbered_input_image: Image, prompt, input_image): | |
""" | |
Perform inference on an image using GPT-4V. | |
Args: | |
numbered_input_image (Image): PIL Image | |
prompt (str): The prompt/question about the image | |
input_image (Image): input image without numbers | |
Returns: | |
str: The model's response | |
""" | |
client = OpenAI() | |
base64_image = encode_image_to_base64(numbered_input_image, format="JPEG") | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": prompt}, | |
{ | |
"type": "image_url", | |
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}, | |
}, | |
], | |
} | |
] | |
response = client.chat.completions.create( | |
model="gpt-4o", messages=messages, max_tokens=300 | |
) | |
messages.extend( | |
[ | |
{"role": "assistant", "content": response.choices[0].message.content}, | |
{ | |
"role": "user", | |
"content": "please return the response in the json with keys left_row and right_row", | |
}, | |
], | |
) | |
response = ( | |
client.chat.completions.create(model="gpt-4o", messages=messages) | |
.choices[0] | |
.message.content | |
) | |
left_index = response.find("{") | |
right_index = response.rfind("}") | |
try: | |
if left_index != -1 and right_index != -1: | |
response_json = eval(response[left_index : right_index + 1]) | |
cropped_image_16_9, image_with_lines, cropped_image_9_16 = ( | |
crop_and_draw_divisions( | |
input_image=input_image, | |
left_division=response_json["left_row"], | |
right_division=response_json["right_row"], | |
) | |
) | |
except Exception as e: | |
print(e) | |
return input_image, input_image, input_image, 0, 20 | |
return ( | |
cropped_image_16_9, | |
image_with_lines, | |
cropped_image_9_16, | |
response_json["left_row"], | |
response_json["right_row"], | |
) | |
def get_sprite_firebase(cid, rsid, uid): | |
config = { | |
"apiKey": f"{os.getenv('FIREBASE_API_KEY')}", | |
"authDomain": f"{os.getenv('FIREBASE_AUTH_DOMAIN')}", | |
"databaseURL": f"{os.getenv('FIREBASE_DATABASE_URL')}", | |
"projectId": f"{os.getenv('FIREBASE_PROJECT_ID')}", | |
"storageBucket": f"{os.getenv('FIREBASE_STORAGE_BUCKET')}", | |
"messagingSenderId": f"{os.getenv('FIREBASE_MESSAGING_SENDER_ID')}", | |
"appId": f"{os.getenv('FIREBASE_APP_ID')}", | |
"measurementId": f"{os.getenv('FIREBASE_MEASUREMENT_ID')}", | |
} | |
firebase = pyrebase.initialize_app(config) | |
db = firebase.database() | |
account_id = os.getenv("ROLL_ACCOUNT") | |
COLLAB_EDIT_LINK = "collab_sprite_link_handler" | |
path = f"{account_id}/{COLLAB_EDIT_LINK}/{uid}/{cid}/{rsid}" | |
data = db.child(path).get() | |
return data.val() | |
def find_persons_center(image): | |
""" | |
Find the center point of all persons in the image. | |
If multiple persons are detected, merge all bounding boxes and find the center. | |
Args: | |
image: CV2/numpy array image | |
Returns: | |
int: x-coordinate of the center point of all persons | |
""" | |
# Detect persons (class 0 in COCO dataset) | |
results = model(image, classes=[0]) | |
if not results or len(results[0].boxes) == 0: | |
# If no persons detected, return center of image | |
return image.shape[1] // 2 | |
# Get all person boxes | |
boxes = results[0].boxes.xyxy.cpu().numpy() | |
# Print the number of persons detected (for debugging) | |
print(f"Detected {len(boxes)} persons in the image") | |
if len(boxes) == 1: | |
# If only one person, return center of their bounding box | |
x1, _, x2, _ = boxes[0] | |
center_x = int((x1 + x2) // 2) | |
print(f"Single person detected at center x: {center_x}") | |
return center_x | |
else: | |
# Multiple persons - create a merged bounding box | |
left_x = min(box[0] for box in boxes) | |
right_x = max(box[2] for box in boxes) | |
merged_center_x = int((left_x + right_x) // 2) | |
print(f"Multiple persons merged bounding box center x: {merged_center_x}") | |
print(f"Merged bounds: left={left_x}, right={right_x}") | |
return merged_center_x | |
def create_layouts(image, left_division, right_division): | |
""" | |
Create different layout variations of the image using half, one-third, and two-thirds width. | |
All layout variations will be centered on detected persons, including 16:9 and 9:16 crops. | |
Args: | |
image: PIL Image | |
left_division: Left division index (1-20) | |
right_division: Right division index (1-20) | |
Returns: | |
tuple: (list of layout variations, cutout_image, cutout_16_9, cutout_9_16) | |
""" | |
# Convert PIL Image to cv2 format | |
if isinstance(image, Image.Image): | |
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
else: | |
image_cv = image.copy() | |
# Get image dimensions | |
height, width = image_cv.shape[:2] | |
# Calculate division width and crop boundaries | |
division_width = width / 20 # Assuming 20 divisions | |
left_boundary = int((left_division - 1) * division_width) | |
right_boundary = int(right_division * division_width) | |
# 1. Create cutout image based on divisions | |
cutout_image = image_cv[:, left_boundary:right_boundary].copy() | |
cutout_width = right_boundary - left_boundary | |
cutout_height = cutout_image.shape[0] | |
# 2. Run YOLO on cutout to get person bounding box and center | |
results = model(cutout_image, classes=[0]) | |
# Default center if no detection | |
cutout_center_x = cutout_image.shape[1] // 2 | |
cutout_center_y = cutout_height // 2 | |
# Default values for bounding box | |
person_top = 0.0 | |
person_height = float(cutout_height) | |
if results and len(results[0].boxes) > 0: | |
# Get person detection | |
boxes = results[0].boxes.xyxy.cpu().numpy() | |
if len(boxes) == 1: | |
# Single person | |
x1, y1, x2, y2 = boxes[0] | |
cutout_center_x = int((x1 + x2) // 2) | |
cutout_center_y = int((y1 + y2) // 2) | |
person_top = y1 | |
person_height = y2 - y1 | |
else: | |
# Multiple persons - merge bounding boxes | |
left_x = min(box[0] for box in boxes) | |
right_x = max(box[2] for box in boxes) | |
top_y = min(box[1] for box in boxes) # Top of highest person | |
bottom_y = max(box[3] for box in boxes) # Bottom of lowest person | |
cutout_center_x = int((left_x + right_x) // 2) | |
cutout_center_y = int((top_y + bottom_y) // 2) | |
person_top = top_y | |
person_height = bottom_y - top_y | |
# 3. Create 16:9 and 9:16 versions with person properly framed | |
aspect_16_9 = 16 / 9 | |
aspect_9_16 = 9 / 16 | |
# For 16:9 version (with 20% margin above person) | |
target_height_16_9 = int(cutout_width / aspect_16_9) | |
if target_height_16_9 <= cutout_height: | |
# Calculate 20% of person height for top margin | |
top_margin = int(person_height * 0.2) | |
# Start 20% above the person's top | |
y_start = int(max(0, person_top - top_margin)) | |
# If this would make the crop exceed the bottom, adjust y_start | |
if y_start + target_height_16_9 > cutout_height: | |
y_start = int(max(0, cutout_height - target_height_16_9)) | |
y_end = int(min(cutout_height, y_start + target_height_16_9)) | |
cutout_16_9 = cutout_image[y_start:y_end, :].copy() | |
else: | |
# Handle rare case where we need to adjust width (not expected with normal images) | |
new_width = int(cutout_height * aspect_16_9) | |
x_start = max( | |
0, min(cutout_width - new_width, cutout_center_x - new_width // 2) | |
) | |
x_end = min(cutout_width, x_start + new_width) | |
cutout_16_9 = cutout_image[:, x_start:x_end].copy() | |
# For 9:16 version (centered on person) | |
target_width_9_16 = int(cutout_height * aspect_9_16) | |
if target_width_9_16 <= cutout_width: | |
# Center horizontally around person | |
x_start = int( | |
max( | |
0, | |
min( | |
cutout_width - target_width_9_16, | |
cutout_center_x - target_width_9_16 // 2, | |
), | |
) | |
) | |
x_end = int(min(cutout_width, x_start + target_width_9_16)) | |
cutout_9_16 = cutout_image[:, x_start:x_end].copy() | |
else: | |
# Handle rare case where we need to adjust height | |
new_height = int(cutout_width / aspect_9_16) | |
y_start = int( | |
max(0, min(cutout_height - new_height, cutout_center_y - new_height // 2)) | |
) | |
y_end = int(min(cutout_height, y_start + new_height)) | |
cutout_9_16 = cutout_image[y_start:y_end, :].copy() | |
# 4. Scale the center back to original image coordinates | |
original_center_x = left_boundary + cutout_center_x | |
# 5. Create layout variations on the original image centered on persons | |
# Half width layout | |
half_width = width // 2 | |
half_left_x = max(0, min(width - half_width, original_center_x - half_width // 2)) | |
half_right_x = half_left_x + half_width | |
half_width_crop = image_cv[:, half_left_x:half_right_x].copy() | |
# Third width layout | |
third_width = width // 3 | |
third_left_x = max( | |
0, min(width - third_width, original_center_x - third_width // 2) | |
) | |
third_right_x = third_left_x + third_width | |
third_width_crop = image_cv[:, third_left_x:third_right_x].copy() | |
# Two-thirds width layout | |
two_thirds_width = (width * 2) // 3 | |
two_thirds_left_x = max( | |
0, min(width - two_thirds_width, original_center_x - two_thirds_width // 2) | |
) | |
two_thirds_right_x = two_thirds_left_x + two_thirds_width | |
two_thirds_crop = image_cv[:, two_thirds_left_x:two_thirds_right_x].copy() | |
# Add labels to all crops | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
label_settings = { | |
"fontScale": 1.0, | |
"fontFace": 1, | |
"thickness": 2, | |
} | |
# Draw label backgrounds for better visibility | |
def add_label(img, label): | |
# Draw background for text | |
text_size = cv2.getTextSize( | |
label, **{k: v for k, v in label_settings.items() if k != "color"} | |
) | |
cv2.rectangle( | |
img, | |
(10, 10), | |
(10 + text_size[0][0] + 10, 10 + text_size[0][1] + 10), | |
(0, 0, 0), | |
-1, | |
) # Black background | |
# Draw text | |
cv2.putText( | |
img, | |
label, | |
(15, 15 + text_size[0][1]), | |
**label_settings, | |
color=(255, 255, 255), | |
lineType=cv2.LINE_AA, | |
) | |
return img | |
cutout_image = add_label(cutout_image, "Cutout") | |
cutout_16_9 = add_label(cutout_16_9, "16:9") | |
cutout_9_16 = add_label(cutout_9_16, "9:16") | |
half_width_crop = add_label(half_width_crop, "Half Width") | |
third_width_crop = add_label(third_width_crop, "Third Width") | |
two_thirds_crop = add_label(two_thirds_crop, "Two-Thirds Width") | |
# Convert all output images to PIL format | |
layout_crops = [] | |
for layout, label in [ | |
(half_width_crop, "Half Width"), | |
(third_width_crop, "Third Width"), | |
(two_thirds_crop, "Two-Thirds Width"), | |
]: | |
pil_layout = Image.fromarray(cv2.cvtColor(layout, cv2.COLOR_BGR2RGB)) | |
layout_crops.append(pil_layout) | |
cutout_pil = Image.fromarray(cv2.cvtColor(cutout_image, cv2.COLOR_BGR2RGB)) | |
cutout_16_9_pil = Image.fromarray(cv2.cvtColor(cutout_16_9, cv2.COLOR_BGR2RGB)) | |
cutout_9_16_pil = Image.fromarray(cv2.cvtColor(cutout_9_16, cv2.COLOR_BGR2RGB)) | |
return layout_crops, cutout_pil, cutout_16_9_pil, cutout_9_16_pil | |
def draw_all_crops_on_original(image, left_division, right_division): | |
""" | |
Create a visualization showing all crop regions overlaid on the original image. | |
Each crop region is outlined with a different color and labeled. | |
All crops are centered on the person's center point. | |
Args: | |
image: PIL Image | |
left_division: Left division index (1-20) | |
right_division: Right division index (1-20) | |
Returns: | |
PIL Image: Original image with all crop regions visualized | |
""" | |
# Convert PIL Image to cv2 format | |
if isinstance(image, Image.Image): | |
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
else: | |
image_cv = image.copy() | |
# Get a clean copy for drawing | |
visualization = image_cv.copy() | |
# Get image dimensions | |
height, width = image_cv.shape[:2] | |
# Calculate division width and crop boundaries | |
division_width = width / 20 # Assuming 20 divisions | |
left_boundary = int((left_division - 1) * division_width) | |
right_boundary = int(right_division * division_width) | |
# Find person bounding box and center in cutout | |
cutout_image = image_cv[:, left_boundary:right_boundary].copy() | |
# Get YOLO detections for person bounding box | |
results = model(cutout_image, classes=[0]) | |
# Default values | |
cutout_center_x = cutout_image.shape[1] // 2 | |
cutout_center_y = cutout_image.shape[0] // 2 | |
person_top = 0.0 | |
person_height = float(cutout_image.shape[0]) | |
if results and len(results[0].boxes) > 0: | |
# Get person detection | |
boxes = results[0].boxes.xyxy.cpu().numpy() | |
if len(boxes) == 1: | |
# Single person | |
x1, y1, x2, y2 = boxes[0] | |
cutout_center_x = int((x1 + x2) // 2) | |
cutout_center_y = int((y1 + y2) // 2) | |
person_top = y1 | |
person_height = y2 - y1 | |
else: | |
# Multiple persons - merge bounding boxes | |
left_x = min(box[0] for box in boxes) | |
right_x = max(box[2] for box in boxes) | |
top_y = min(box[1] for box in boxes) # Top of highest person | |
bottom_y = max(box[3] for box in boxes) # Bottom of lowest person | |
cutout_center_x = int((left_x + right_x) // 2) | |
cutout_center_y = int((top_y + bottom_y) // 2) | |
person_top = top_y | |
person_height = bottom_y - top_y | |
# Scale back to original image | |
original_center_x = left_boundary + cutout_center_x | |
original_center_y = cutout_center_y | |
original_person_top = ( | |
person_top # Already in original image space since we didn't crop vertically | |
) | |
original_person_height = person_height # Same in original space | |
# Define colors for different crops (BGR format) | |
colors = { | |
"cutout": (0, 165, 255), # Orange | |
"16:9": (0, 255, 0), # Green | |
"9:16": (255, 0, 0), # Blue | |
"half": (255, 255, 0), # Cyan | |
"third": (255, 0, 255), # Magenta | |
"two_thirds": (0, 255, 255), # Yellow | |
} | |
# Define line thickness and font | |
thickness = 3 | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
font_scale = 0.8 | |
font_thickness = 2 | |
# 1. Draw cutout region (original divisions) | |
cv2.rectangle( | |
visualization, | |
(left_boundary, 0), | |
(right_boundary, height), | |
colors["cutout"], | |
thickness, | |
) | |
cv2.putText( | |
visualization, | |
"Cutout", | |
(left_boundary + 5, 30), | |
font, | |
font_scale, | |
colors["cutout"], | |
font_thickness, | |
) | |
# 2. Create 16:9 and 9:16 versions of the cutout - CENTERED on person | |
cutout_width = right_boundary - left_boundary | |
cutout_height = height | |
# For 16:9 version with 20% margin above person | |
aspect_16_9 = 16 / 9 | |
target_height_16_9 = int(cutout_width / aspect_16_9) | |
if target_height_16_9 <= height: | |
# Calculate 20% of person height for top margin | |
top_margin = int(original_person_height * 0.2) | |
# Start 20% above the person's top | |
y_start = int(max(0, original_person_top - top_margin)) | |
# If this would make the crop exceed the bottom, adjust y_start | |
if y_start + target_height_16_9 > height: | |
y_start = int(max(0, height - target_height_16_9)) | |
y_end = int(min(height, y_start + target_height_16_9)) | |
cv2.rectangle( | |
visualization, | |
(left_boundary, y_start), | |
(right_boundary, y_end), | |
colors["16:9"], | |
thickness, | |
) | |
cv2.putText( | |
visualization, | |
"16:9", | |
(left_boundary + 5, y_start + 30), | |
font, | |
font_scale, | |
colors["16:9"], | |
font_thickness, | |
) | |
# For 9:16 version centered on person | |
aspect_9_16 = 9 / 16 | |
target_width_9_16 = int(cutout_height * aspect_9_16) | |
if target_width_9_16 <= cutout_width: | |
# Center horizontally around person | |
x_start = max( | |
0, | |
min( | |
left_boundary + cutout_width - target_width_9_16, | |
original_center_x - target_width_9_16 // 2, | |
), | |
) | |
x_end = x_start + target_width_9_16 | |
cv2.rectangle( | |
visualization, (x_start, 0), (x_end, height), colors["9:16"], thickness | |
) | |
cv2.putText( | |
visualization, | |
"9:16", | |
(x_start + 5, 60), | |
font, | |
font_scale, | |
colors["9:16"], | |
font_thickness, | |
) | |
# 3. Draw centered layout variations | |
# Half width layout | |
half_width = width // 2 | |
half_left_x = max(0, min(width - half_width, original_center_x - half_width // 2)) | |
half_right_x = half_left_x + half_width | |
cv2.rectangle( | |
visualization, | |
(half_left_x, 0), | |
(half_right_x, height), | |
colors["half"], | |
thickness, | |
) | |
cv2.putText( | |
visualization, | |
"Half Width", | |
(half_left_x + 5, 90), | |
font, | |
font_scale, | |
colors["half"], | |
font_thickness, | |
) | |
# Third width layout | |
third_width = width // 3 | |
third_left_x = max( | |
0, min(width - third_width, original_center_x - third_width // 2) | |
) | |
third_right_x = third_left_x + third_width | |
cv2.rectangle( | |
visualization, | |
(third_left_x, 0), | |
(third_right_x, height), | |
colors["third"], | |
thickness, | |
) | |
cv2.putText( | |
visualization, | |
"Third Width", | |
(third_left_x + 5, 120), | |
font, | |
font_scale, | |
colors["third"], | |
font_thickness, | |
) | |
# Two-thirds width layout | |
two_thirds_width = (width * 2) // 3 | |
two_thirds_left_x = max( | |
0, min(width - two_thirds_width, original_center_x - two_thirds_width // 2) | |
) | |
two_thirds_right_x = two_thirds_left_x + two_thirds_width | |
cv2.rectangle( | |
visualization, | |
(two_thirds_left_x, 0), | |
(two_thirds_right_x, height), | |
colors["two_thirds"], | |
thickness, | |
) | |
cv2.putText( | |
visualization, | |
"Two-Thirds Width", | |
(two_thirds_left_x + 5, 150), | |
font, | |
font_scale, | |
colors["two_thirds"], | |
font_thickness, | |
) | |
# 4. Draw center point of person(s) | |
center_radius = 8 | |
cv2.circle( | |
visualization, | |
(original_center_x, height // 2), | |
center_radius, | |
(255, 255, 255), | |
-1, | |
) | |
cv2.circle( | |
visualization, (original_center_x, height // 2), center_radius, (0, 0, 0), 2 | |
) | |
cv2.putText( | |
visualization, | |
"Person Center", | |
(original_center_x + 10, height // 2), | |
font, | |
font_scale, | |
(255, 255, 255), | |
font_thickness, | |
) | |
# Convert back to PIL format | |
visualization_pil = Image.fromarray(cv2.cvtColor(visualization, cv2.COLOR_BGR2RGB)) | |
return visualization_pil | |
def get_image_crop(cid=None, rsid=None, uid=None): | |
""" | |
Function that returns both 16:9 and 9:16 crops and layout variations for visualization. | |
Returns: | |
gr.Gallery: Gallery of all generated images | |
""" | |
# Uncomment this line when using Firebase | |
# image_paths = get_sprite_firebase(cid, rsid, uid) | |
# For testing, use a local image path | |
image_paths = ["sprite1.jpg", "sprite2.jpg"] | |
# Lists to store all images | |
all_images = [] | |
all_captions = [] | |
for image_path in image_paths: | |
# Load image (from local file or URL) | |
try: | |
if image_path.startswith(("http://", "https://")): | |
response = requests.get(image_path) | |
input_image = Image.open(BytesIO(response.content)) | |
else: | |
input_image = Image.open(image_path) | |
except Exception as e: | |
print(f"Error loading image {image_path}: {e}") | |
continue | |
# Get the middle thumbnail | |
mid_image = get_middle_thumbnail(input_image) | |
# Add numbered divisions for GPT-4V analysis | |
numbered_mid_image = add_top_numbers( | |
input_image=mid_image, | |
num_divisions=20, | |
margin=50, | |
font_size=30, | |
dot_spacing=20, | |
) | |
# Analyze the image to get optimal crop divisions | |
# This uses GPT-4V to identify the optimal crop points | |
( | |
_, | |
_, | |
_, | |
left_division, | |
right_division, | |
) = analyze_image(numbered_mid_image, remove_unwanted_prompt(2), mid_image) | |
# Safety check for divisions | |
if left_division <= 0: | |
left_division = 1 | |
if right_division > 20: | |
right_division = 20 | |
if left_division >= right_division: | |
left_division = 1 | |
right_division = 20 | |
print(f"Using divisions: left={left_division}, right={right_division}") | |
# Create layouts and cutouts | |
layouts, cutout_image, cutout_16_9, cutout_9_16 = create_layouts( | |
mid_image, left_division, right_division | |
) | |
# Create the visualization with all crops overlaid on original | |
all_crops_visualization = draw_all_crops_on_original( | |
mid_image, left_division, right_division | |
) | |
# Start with the visualization showing all crops | |
all_images.append(all_crops_visualization) | |
all_captions.append(f"All Crops Visualization {all_crops_visualization.size}") | |
# Add input and middle image to gallery | |
all_images.append(input_image) | |
all_captions.append(f"Input Image {input_image.size}") | |
all_images.append(mid_image) | |
all_captions.append(f"Middle Thumbnail {mid_image.size}") | |
# Add cutout images to gallery | |
all_images.append(cutout_image) | |
all_captions.append(f"Cutout Image {cutout_image.size}") | |
all_images.append(cutout_16_9) | |
all_captions.append(f"16:9 Crop {cutout_16_9.size}") | |
all_images.append(cutout_9_16) | |
all_captions.append(f"9:16 Crop {cutout_9_16.size}") | |
# Add layout variations | |
for i, layout in enumerate(layouts): | |
label = ["Half Width", "Third Width", "Two-Thirds Width"][i] | |
all_images.append(layout) | |
all_captions.append(f"{label} {layout.size}") | |
# Return gallery with all images | |
return gr.Gallery(value=list(zip(all_images, all_captions))) | |