Rocky080808's picture
Update app.py
cc50bcf verified
raw
history blame
5.45 kB
# Codes that passed test
'''
import streamlit as st
from transformers import pipeline
# Load model only once using caching
@st.cache_resource # Use Streamlit's caching to avoid reloading the model
def load_sentiment_pipeline():
return pipeline("sentiment-analysis", model="Rocky080808/finetuned-roberta-base")
# Main application logic
def main():
# Load the sentiment analysis pipeline only once
sentiment_pipeline = load_sentiment_pipeline()
st.title("Final Project Demonstration for Group 8")
st.write("This is an application for customer comments sentiment analysis for an e-commerce company.")
st.write("Please input the customer comments for analysis below:")
user_input = st.text_input("Enter customer comments here:")
# Define a mapping from label to English descriptions
label_to_text = {
0: "Very dissatisfied, immediate follow-up is required.",
1: "Dissatisfied, please arrange follow-up.",
2: "Neutral sentiment, further case analysis is needed.",
3: "Satisfied, the customer may return for a purchase.",
4: "Very satisfied, the customer is very likely to return and recommend."
}
if user_input:
# Call the preloaded pipeline to analyze sentiment
result = sentiment_pipeline(user_input)
label_str = result[0]["label"] # Get the label as a string, e.g., "LABEL_0"
label = int(label_str.split("_")[-1]) # Extract the numeric part of the label
confidence = result[0]["score"]
# Get the corresponding text description based on the label
sentiment_text = label_to_text.get(label, "Unrecognized sentiment")
st.write(f"Sentiment Analysis Result: {sentiment_text}")
# Hide the confidence score, no need to show to the users
# st.write(f"Confidence Score: {confidence:.2f}")
if __name__ == "__main__":
main()
'''
# New codes to be tested
import streamlit as st
from transformers import pipeline
from langdetect import detect
# Load translation pipeline for multiple languages
@st.cache_resource # Cache the model to avoid reloading it
def load_translation_pipeline():
return pipeline("translation", model="facebook/m2m100_418M")
# Load sentiment analysis pipeline
@st.cache_resource # Cache the sentiment analysis model
def load_sentiment_pipeline():
return pipeline("sentiment-analysis", model="Rocky080808/finetuned-roberta-base")
# Function to detect language and translate to English
def translate_to_english(text, translation_pipeline):
# Detect the language of the input text
detected_language = detect(text)
# Supported languages: Chinese, Japanese, German, Spanish, French
language_map = {
'zh': "zh", # Chinese
'ja': "ja", # Japanese
'de': "de", # German
'es': "es", # Spanish
'fr': "fr" # French
}
if detected_language not in language_map:
return None, "Unsupported language"
# Translate the text to English using the detected language
translated_text = translation_pipeline(text, src_lang=language_map[detected_language], tgt_lang="en")
return translated_text[0]['translation_text'], detected_language
# Main application logic
def main():
# Load the translation and sentiment pipelines
translation_pipeline = load_translation_pipeline()
sentiment_pipeline = load_sentiment_pipeline()
st.title("Final Project Demonstration for Group 8")
st.write("This application supports customer comments sentiment analysis for an e-commerce company.")
st.write("You can input text in Chinese, Japanese, German, Spanish, or French. The text will be translated to English for sentiment analysis.")
user_input = st.text_input("Enter customer comments in supported languages:")
# Define a mapping from label to English descriptions
label_to_text = {
0: "Very dissatisfied, immediate follow-up is required.",
1: "Dissatisfied, please arrange follow-up.",
2: "Neutral sentiment, further case analysis is needed.",
3: "Satisfied, the customer may return for a purchase.",
4: "Very satisfied, the customer is very likely to return and recommend."
}
if user_input:
# Step 1: Translate the input text to English
translated_text, detected_language = translate_to_english(user_input, translation_pipeline)
if detected_language == "Unsupported language":
st.write("The input language is not supported. Please use Chinese, Japanese, German, Spanish, or French.")
else:
# Display the translated text
st.write(f"Detected language: {detected_language}")
st.write(f"Translated Text: {translated_text}")
# Step 2: Perform sentiment analysis on the translated text
result = sentiment_pipeline(translated_text)
label_str = result[0]["label"] # Get the label as a string, e.g., "LABEL_0"
label = int(label_str.split("_")[-1]) # Extract the numeric part of the label
confidence = result[0]["score"]
# Get the corresponding text description based on the label
sentiment_text = label_to_text.get(label, "Unrecognized sentiment")
st.write(f"Sentiment Analysis Result: {sentiment_text}")
st.write(f"Confidence Score: {confidence:.2f}")
if __name__ == "__main__":
main()