# Codes that passed test ''' import streamlit as st from transformers import pipeline # Load model only once using caching @st.cache_resource # Use Streamlit's caching to avoid reloading the model def load_sentiment_pipeline(): return pipeline("sentiment-analysis", model="Rocky080808/finetuned-roberta-base") # Main application logic def main(): # Load the sentiment analysis pipeline only once sentiment_pipeline = load_sentiment_pipeline() st.title("Final Project Demonstration for Group 8") st.write("This is an application for customer comments sentiment analysis for an e-commerce company.") st.write("Please input the customer comments for analysis below:") user_input = st.text_input("Enter customer comments here:") # Define a mapping from label to English descriptions label_to_text = { 0: "Very dissatisfied, immediate follow-up is required.", 1: "Dissatisfied, please arrange follow-up.", 2: "Neutral sentiment, further case analysis is needed.", 3: "Satisfied, the customer may return for a purchase.", 4: "Very satisfied, the customer is very likely to return and recommend." } if user_input: # Call the preloaded pipeline to analyze sentiment result = sentiment_pipeline(user_input) label_str = result[0]["label"] # Get the label as a string, e.g., "LABEL_0" label = int(label_str.split("_")[-1]) # Extract the numeric part of the label confidence = result[0]["score"] # Get the corresponding text description based on the label sentiment_text = label_to_text.get(label, "Unrecognized sentiment") st.write(f"Sentiment Analysis Result: {sentiment_text}") # Hide the confidence score, no need to show to the users # st.write(f"Confidence Score: {confidence:.2f}") if __name__ == "__main__": main() ''' # New codes to be tested import streamlit as st from transformers import pipeline from langdetect import detect # Load translation pipeline for multiple languages @st.cache_resource # Cache the model to avoid reloading it def load_translation_pipeline(): return pipeline("translation", model="facebook/m2m100_418M") # Load sentiment analysis pipeline @st.cache_resource # Cache the sentiment analysis model def load_sentiment_pipeline(): return pipeline("sentiment-analysis", model="Rocky080808/finetuned-roberta-base") # Function to detect language and translate to English def translate_to_english(text, translation_pipeline): # Detect the language of the input text detected_language = detect(text) # Supported languages: Chinese, Japanese, German, Spanish, French language_map = { 'zh': "zh", # Chinese 'ja': "ja", # Japanese 'de': "de", # German 'es': "es", # Spanish 'fr': "fr" # French } if detected_language not in language_map: return None, "Unsupported language" # Translate the text to English using the detected language translated_text = translation_pipeline(text, src_lang=language_map[detected_language], tgt_lang="en") return translated_text[0]['translation_text'], detected_language # Main application logic def main(): # Load the translation and sentiment pipelines translation_pipeline = load_translation_pipeline() sentiment_pipeline = load_sentiment_pipeline() st.title("Final Project Demonstration for Group 8") st.write("This application supports customer comments sentiment analysis for an e-commerce company.") st.write("You can input text in Chinese, Japanese, German, Spanish, or French. The text will be translated to English for sentiment analysis.") user_input = st.text_input("Enter customer comments in supported languages:") # Define a mapping from label to English descriptions label_to_text = { 0: "Very dissatisfied, immediate follow-up is required.", 1: "Dissatisfied, please arrange follow-up.", 2: "Neutral sentiment, further case analysis is needed.", 3: "Satisfied, the customer may return for a purchase.", 4: "Very satisfied, the customer is very likely to return and recommend." } if user_input: # Step 1: Translate the input text to English translated_text, detected_language = translate_to_english(user_input, translation_pipeline) if detected_language == "Unsupported language": st.write("The input language is not supported. Please use Chinese, Japanese, German, Spanish, or French.") else: # Display the translated text st.write(f"Detected language: {detected_language}") st.write(f"Translated Text: {translated_text}") # Step 2: Perform sentiment analysis on the translated text result = sentiment_pipeline(translated_text) label_str = result[0]["label"] # Get the label as a string, e.g., "LABEL_0" label = int(label_str.split("_")[-1]) # Extract the numeric part of the label confidence = result[0]["score"] # Get the corresponding text description based on the label sentiment_text = label_to_text.get(label, "Unrecognized sentiment") st.write(f"Sentiment Analysis Result: {sentiment_text}") st.write(f"Confidence Score: {confidence:.2f}") if __name__ == "__main__": main()