Robert001's picture
first commit
b334e29
raw
history blame
No virus
24.6 kB
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, kaiming_init, normal_init, xavier_init
from mmcv.runner import force_fp32
from mmdet.core import build_bbox_coder, multi_apply, multiclass_nms
from mmdet.models.builder import HEADS, build_loss
from mmdet.models.losses import accuracy
@HEADS.register_module()
class SABLHead(nn.Module):
"""Side-Aware Boundary Localization (SABL) for RoI-Head.
Side-Aware features are extracted by conv layers
with an attention mechanism.
Boundary Localization with Bucketing and Bucketing Guided Rescoring
are implemented in BucketingBBoxCoder.
Please refer to https://arxiv.org/abs/1912.04260 for more details.
Args:
cls_in_channels (int): Input channels of cls RoI feature. \
Defaults to 256.
reg_in_channels (int): Input channels of reg RoI feature. \
Defaults to 256.
roi_feat_size (int): Size of RoI features. Defaults to 7.
reg_feat_up_ratio (int): Upsample ratio of reg features. \
Defaults to 2.
reg_pre_kernel (int): Kernel of 2D conv layers before \
attention pooling. Defaults to 3.
reg_post_kernel (int): Kernel of 1D conv layers after \
attention pooling. Defaults to 3.
reg_pre_num (int): Number of pre convs. Defaults to 2.
reg_post_num (int): Number of post convs. Defaults to 1.
num_classes (int): Number of classes in dataset. Defaults to 80.
cls_out_channels (int): Hidden channels in cls fcs. Defaults to 1024.
reg_offset_out_channels (int): Hidden and output channel \
of reg offset branch. Defaults to 256.
reg_cls_out_channels (int): Hidden and output channel \
of reg cls branch. Defaults to 256.
num_cls_fcs (int): Number of fcs for cls branch. Defaults to 1.
num_reg_fcs (int): Number of fcs for reg branch.. Defaults to 0.
reg_class_agnostic (bool): Class agnostic regresion or not. \
Defaults to True.
norm_cfg (dict): Config of norm layers. Defaults to None.
bbox_coder (dict): Config of bbox coder. Defaults 'BucketingBBoxCoder'.
loss_cls (dict): Config of classification loss.
loss_bbox_cls (dict): Config of classification loss for bbox branch.
loss_bbox_reg (dict): Config of regression loss for bbox branch.
"""
def __init__(self,
num_classes,
cls_in_channels=256,
reg_in_channels=256,
roi_feat_size=7,
reg_feat_up_ratio=2,
reg_pre_kernel=3,
reg_post_kernel=3,
reg_pre_num=2,
reg_post_num=1,
cls_out_channels=1024,
reg_offset_out_channels=256,
reg_cls_out_channels=256,
num_cls_fcs=1,
num_reg_fcs=0,
reg_class_agnostic=True,
norm_cfg=None,
bbox_coder=dict(
type='BucketingBBoxCoder',
num_buckets=14,
scale_factor=1.7),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0),
loss_bbox_reg=dict(
type='SmoothL1Loss', beta=0.1, loss_weight=1.0)):
super(SABLHead, self).__init__()
self.cls_in_channels = cls_in_channels
self.reg_in_channels = reg_in_channels
self.roi_feat_size = roi_feat_size
self.reg_feat_up_ratio = int(reg_feat_up_ratio)
self.num_buckets = bbox_coder['num_buckets']
assert self.reg_feat_up_ratio // 2 >= 1
self.up_reg_feat_size = roi_feat_size * self.reg_feat_up_ratio
assert self.up_reg_feat_size == bbox_coder['num_buckets']
self.reg_pre_kernel = reg_pre_kernel
self.reg_post_kernel = reg_post_kernel
self.reg_pre_num = reg_pre_num
self.reg_post_num = reg_post_num
self.num_classes = num_classes
self.cls_out_channels = cls_out_channels
self.reg_offset_out_channels = reg_offset_out_channels
self.reg_cls_out_channels = reg_cls_out_channels
self.num_cls_fcs = num_cls_fcs
self.num_reg_fcs = num_reg_fcs
self.reg_class_agnostic = reg_class_agnostic
assert self.reg_class_agnostic
self.norm_cfg = norm_cfg
self.bbox_coder = build_bbox_coder(bbox_coder)
self.loss_cls = build_loss(loss_cls)
self.loss_bbox_cls = build_loss(loss_bbox_cls)
self.loss_bbox_reg = build_loss(loss_bbox_reg)
self.cls_fcs = self._add_fc_branch(self.num_cls_fcs,
self.cls_in_channels,
self.roi_feat_size,
self.cls_out_channels)
self.side_num = int(np.ceil(self.num_buckets / 2))
if self.reg_feat_up_ratio > 1:
self.upsample_x = nn.ConvTranspose1d(
reg_in_channels,
reg_in_channels,
self.reg_feat_up_ratio,
stride=self.reg_feat_up_ratio)
self.upsample_y = nn.ConvTranspose1d(
reg_in_channels,
reg_in_channels,
self.reg_feat_up_ratio,
stride=self.reg_feat_up_ratio)
self.reg_pre_convs = nn.ModuleList()
for i in range(self.reg_pre_num):
reg_pre_conv = ConvModule(
reg_in_channels,
reg_in_channels,
kernel_size=reg_pre_kernel,
padding=reg_pre_kernel // 2,
norm_cfg=norm_cfg,
act_cfg=dict(type='ReLU'))
self.reg_pre_convs.append(reg_pre_conv)
self.reg_post_conv_xs = nn.ModuleList()
for i in range(self.reg_post_num):
reg_post_conv_x = ConvModule(
reg_in_channels,
reg_in_channels,
kernel_size=(1, reg_post_kernel),
padding=(0, reg_post_kernel // 2),
norm_cfg=norm_cfg,
act_cfg=dict(type='ReLU'))
self.reg_post_conv_xs.append(reg_post_conv_x)
self.reg_post_conv_ys = nn.ModuleList()
for i in range(self.reg_post_num):
reg_post_conv_y = ConvModule(
reg_in_channels,
reg_in_channels,
kernel_size=(reg_post_kernel, 1),
padding=(reg_post_kernel // 2, 0),
norm_cfg=norm_cfg,
act_cfg=dict(type='ReLU'))
self.reg_post_conv_ys.append(reg_post_conv_y)
self.reg_conv_att_x = nn.Conv2d(reg_in_channels, 1, 1)
self.reg_conv_att_y = nn.Conv2d(reg_in_channels, 1, 1)
self.fc_cls = nn.Linear(self.cls_out_channels, self.num_classes + 1)
self.relu = nn.ReLU(inplace=True)
self.reg_cls_fcs = self._add_fc_branch(self.num_reg_fcs,
self.reg_in_channels, 1,
self.reg_cls_out_channels)
self.reg_offset_fcs = self._add_fc_branch(self.num_reg_fcs,
self.reg_in_channels, 1,
self.reg_offset_out_channels)
self.fc_reg_cls = nn.Linear(self.reg_cls_out_channels, 1)
self.fc_reg_offset = nn.Linear(self.reg_offset_out_channels, 1)
def _add_fc_branch(self, num_branch_fcs, in_channels, roi_feat_size,
fc_out_channels):
in_channels = in_channels * roi_feat_size * roi_feat_size
branch_fcs = nn.ModuleList()
for i in range(num_branch_fcs):
fc_in_channels = (in_channels if i == 0 else fc_out_channels)
branch_fcs.append(nn.Linear(fc_in_channels, fc_out_channels))
return branch_fcs
def init_weights(self):
for module_list in [
self.reg_cls_fcs, self.reg_offset_fcs, self.cls_fcs
]:
for m in module_list.modules():
if isinstance(m, nn.Linear):
xavier_init(m, distribution='uniform')
if self.reg_feat_up_ratio > 1:
kaiming_init(self.upsample_x, distribution='normal')
kaiming_init(self.upsample_y, distribution='normal')
normal_init(self.reg_conv_att_x, 0, 0.01)
normal_init(self.reg_conv_att_y, 0, 0.01)
normal_init(self.fc_reg_offset, 0, 0.001)
normal_init(self.fc_reg_cls, 0, 0.01)
normal_init(self.fc_cls, 0, 0.01)
def cls_forward(self, cls_x):
cls_x = cls_x.view(cls_x.size(0), -1)
for fc in self.cls_fcs:
cls_x = self.relu(fc(cls_x))
cls_score = self.fc_cls(cls_x)
return cls_score
def attention_pool(self, reg_x):
"""Extract direction-specific features fx and fy with attention
methanism."""
reg_fx = reg_x
reg_fy = reg_x
reg_fx_att = self.reg_conv_att_x(reg_fx).sigmoid()
reg_fy_att = self.reg_conv_att_y(reg_fy).sigmoid()
reg_fx_att = reg_fx_att / reg_fx_att.sum(dim=2).unsqueeze(2)
reg_fy_att = reg_fy_att / reg_fy_att.sum(dim=3).unsqueeze(3)
reg_fx = (reg_fx * reg_fx_att).sum(dim=2)
reg_fy = (reg_fy * reg_fy_att).sum(dim=3)
return reg_fx, reg_fy
def side_aware_feature_extractor(self, reg_x):
"""Refine and extract side-aware features without split them."""
for reg_pre_conv in self.reg_pre_convs:
reg_x = reg_pre_conv(reg_x)
reg_fx, reg_fy = self.attention_pool(reg_x)
if self.reg_post_num > 0:
reg_fx = reg_fx.unsqueeze(2)
reg_fy = reg_fy.unsqueeze(3)
for i in range(self.reg_post_num):
reg_fx = self.reg_post_conv_xs[i](reg_fx)
reg_fy = self.reg_post_conv_ys[i](reg_fy)
reg_fx = reg_fx.squeeze(2)
reg_fy = reg_fy.squeeze(3)
if self.reg_feat_up_ratio > 1:
reg_fx = self.relu(self.upsample_x(reg_fx))
reg_fy = self.relu(self.upsample_y(reg_fy))
reg_fx = torch.transpose(reg_fx, 1, 2)
reg_fy = torch.transpose(reg_fy, 1, 2)
return reg_fx.contiguous(), reg_fy.contiguous()
def reg_pred(self, x, offset_fcs, cls_fcs):
"""Predict bucketing estimation (cls_pred) and fine regression (offset
pred) with side-aware features."""
x_offset = x.view(-1, self.reg_in_channels)
x_cls = x.view(-1, self.reg_in_channels)
for fc in offset_fcs:
x_offset = self.relu(fc(x_offset))
for fc in cls_fcs:
x_cls = self.relu(fc(x_cls))
offset_pred = self.fc_reg_offset(x_offset)
cls_pred = self.fc_reg_cls(x_cls)
offset_pred = offset_pred.view(x.size(0), -1)
cls_pred = cls_pred.view(x.size(0), -1)
return offset_pred, cls_pred
def side_aware_split(self, feat):
"""Split side-aware features aligned with orders of bucketing
targets."""
l_end = int(np.ceil(self.up_reg_feat_size / 2))
r_start = int(np.floor(self.up_reg_feat_size / 2))
feat_fl = feat[:, :l_end]
feat_fr = feat[:, r_start:].flip(dims=(1, ))
feat_fl = feat_fl.contiguous()
feat_fr = feat_fr.contiguous()
feat = torch.cat([feat_fl, feat_fr], dim=-1)
return feat
def bbox_pred_split(self, bbox_pred, num_proposals_per_img):
"""Split batch bbox prediction back to each image."""
bucket_cls_preds, bucket_offset_preds = bbox_pred
bucket_cls_preds = bucket_cls_preds.split(num_proposals_per_img, 0)
bucket_offset_preds = bucket_offset_preds.split(
num_proposals_per_img, 0)
bbox_pred = tuple(zip(bucket_cls_preds, bucket_offset_preds))
return bbox_pred
def reg_forward(self, reg_x):
outs = self.side_aware_feature_extractor(reg_x)
edge_offset_preds = []
edge_cls_preds = []
reg_fx = outs[0]
reg_fy = outs[1]
offset_pred_x, cls_pred_x = self.reg_pred(reg_fx, self.reg_offset_fcs,
self.reg_cls_fcs)
offset_pred_y, cls_pred_y = self.reg_pred(reg_fy, self.reg_offset_fcs,
self.reg_cls_fcs)
offset_pred_x = self.side_aware_split(offset_pred_x)
offset_pred_y = self.side_aware_split(offset_pred_y)
cls_pred_x = self.side_aware_split(cls_pred_x)
cls_pred_y = self.side_aware_split(cls_pred_y)
edge_offset_preds = torch.cat([offset_pred_x, offset_pred_y], dim=-1)
edge_cls_preds = torch.cat([cls_pred_x, cls_pred_y], dim=-1)
return (edge_cls_preds, edge_offset_preds)
def forward(self, x):
bbox_pred = self.reg_forward(x)
cls_score = self.cls_forward(x)
return cls_score, bbox_pred
def get_targets(self, sampling_results, gt_bboxes, gt_labels,
rcnn_train_cfg):
pos_proposals = [res.pos_bboxes for res in sampling_results]
neg_proposals = [res.neg_bboxes for res in sampling_results]
pos_gt_bboxes = [res.pos_gt_bboxes for res in sampling_results]
pos_gt_labels = [res.pos_gt_labels for res in sampling_results]
cls_reg_targets = self.bucket_target(pos_proposals, neg_proposals,
pos_gt_bboxes, pos_gt_labels,
rcnn_train_cfg)
(labels, label_weights, bucket_cls_targets, bucket_cls_weights,
bucket_offset_targets, bucket_offset_weights) = cls_reg_targets
return (labels, label_weights, (bucket_cls_targets,
bucket_offset_targets),
(bucket_cls_weights, bucket_offset_weights))
def bucket_target(self,
pos_proposals_list,
neg_proposals_list,
pos_gt_bboxes_list,
pos_gt_labels_list,
rcnn_train_cfg,
concat=True):
(labels, label_weights, bucket_cls_targets, bucket_cls_weights,
bucket_offset_targets, bucket_offset_weights) = multi_apply(
self._bucket_target_single,
pos_proposals_list,
neg_proposals_list,
pos_gt_bboxes_list,
pos_gt_labels_list,
cfg=rcnn_train_cfg)
if concat:
labels = torch.cat(labels, 0)
label_weights = torch.cat(label_weights, 0)
bucket_cls_targets = torch.cat(bucket_cls_targets, 0)
bucket_cls_weights = torch.cat(bucket_cls_weights, 0)
bucket_offset_targets = torch.cat(bucket_offset_targets, 0)
bucket_offset_weights = torch.cat(bucket_offset_weights, 0)
return (labels, label_weights, bucket_cls_targets, bucket_cls_weights,
bucket_offset_targets, bucket_offset_weights)
def _bucket_target_single(self, pos_proposals, neg_proposals,
pos_gt_bboxes, pos_gt_labels, cfg):
"""Compute bucketing estimation targets and fine regression targets for
a single image.
Args:
pos_proposals (Tensor): positive proposals of a single image,
Shape (n_pos, 4)
neg_proposals (Tensor): negative proposals of a single image,
Shape (n_neg, 4).
pos_gt_bboxes (Tensor): gt bboxes assigned to positive proposals
of a single image, Shape (n_pos, 4).
pos_gt_labels (Tensor): gt labels assigned to positive proposals
of a single image, Shape (n_pos, ).
cfg (dict): Config of calculating targets
Returns:
tuple:
- labels (Tensor): Labels in a single image. \
Shape (n,).
- label_weights (Tensor): Label weights in a single image.\
Shape (n,)
- bucket_cls_targets (Tensor): Bucket cls targets in \
a single image. Shape (n, num_buckets*2).
- bucket_cls_weights (Tensor): Bucket cls weights in \
a single image. Shape (n, num_buckets*2).
- bucket_offset_targets (Tensor): Bucket offset targets \
in a single image. Shape (n, num_buckets*2).
- bucket_offset_targets (Tensor): Bucket offset weights \
in a single image. Shape (n, num_buckets*2).
"""
num_pos = pos_proposals.size(0)
num_neg = neg_proposals.size(0)
num_samples = num_pos + num_neg
labels = pos_gt_bboxes.new_full((num_samples, ),
self.num_classes,
dtype=torch.long)
label_weights = pos_proposals.new_zeros(num_samples)
bucket_cls_targets = pos_proposals.new_zeros(num_samples,
4 * self.side_num)
bucket_cls_weights = pos_proposals.new_zeros(num_samples,
4 * self.side_num)
bucket_offset_targets = pos_proposals.new_zeros(
num_samples, 4 * self.side_num)
bucket_offset_weights = pos_proposals.new_zeros(
num_samples, 4 * self.side_num)
if num_pos > 0:
labels[:num_pos] = pos_gt_labels
label_weights[:num_pos] = 1.0
(pos_bucket_offset_targets, pos_bucket_offset_weights,
pos_bucket_cls_targets,
pos_bucket_cls_weights) = self.bbox_coder.encode(
pos_proposals, pos_gt_bboxes)
bucket_cls_targets[:num_pos, :] = pos_bucket_cls_targets
bucket_cls_weights[:num_pos, :] = pos_bucket_cls_weights
bucket_offset_targets[:num_pos, :] = pos_bucket_offset_targets
bucket_offset_weights[:num_pos, :] = pos_bucket_offset_weights
if num_neg > 0:
label_weights[-num_neg:] = 1.0
return (labels, label_weights, bucket_cls_targets, bucket_cls_weights,
bucket_offset_targets, bucket_offset_weights)
def loss(self,
cls_score,
bbox_pred,
rois,
labels,
label_weights,
bbox_targets,
bbox_weights,
reduction_override=None):
losses = dict()
if cls_score is not None:
avg_factor = max(torch.sum(label_weights > 0).float().item(), 1.)
losses['loss_cls'] = self.loss_cls(
cls_score,
labels,
label_weights,
avg_factor=avg_factor,
reduction_override=reduction_override)
losses['acc'] = accuracy(cls_score, labels)
if bbox_pred is not None:
bucket_cls_preds, bucket_offset_preds = bbox_pred
bucket_cls_targets, bucket_offset_targets = bbox_targets
bucket_cls_weights, bucket_offset_weights = bbox_weights
# edge cls
bucket_cls_preds = bucket_cls_preds.view(-1, self.side_num)
bucket_cls_targets = bucket_cls_targets.view(-1, self.side_num)
bucket_cls_weights = bucket_cls_weights.view(-1, self.side_num)
losses['loss_bbox_cls'] = self.loss_bbox_cls(
bucket_cls_preds,
bucket_cls_targets,
bucket_cls_weights,
avg_factor=bucket_cls_targets.size(0),
reduction_override=reduction_override)
losses['loss_bbox_reg'] = self.loss_bbox_reg(
bucket_offset_preds,
bucket_offset_targets,
bucket_offset_weights,
avg_factor=bucket_offset_targets.size(0),
reduction_override=reduction_override)
return losses
@force_fp32(apply_to=('cls_score', 'bbox_pred'))
def get_bboxes(self,
rois,
cls_score,
bbox_pred,
img_shape,
scale_factor,
rescale=False,
cfg=None):
if isinstance(cls_score, list):
cls_score = sum(cls_score) / float(len(cls_score))
scores = F.softmax(cls_score, dim=1) if cls_score is not None else None
if bbox_pred is not None:
bboxes, confids = self.bbox_coder.decode(rois[:, 1:], bbox_pred,
img_shape)
else:
bboxes = rois[:, 1:].clone()
confids = None
if img_shape is not None:
bboxes[:, [0, 2]].clamp_(min=0, max=img_shape[1] - 1)
bboxes[:, [1, 3]].clamp_(min=0, max=img_shape[0] - 1)
if rescale and bboxes.size(0) > 0:
if isinstance(scale_factor, float):
bboxes /= scale_factor
else:
bboxes /= torch.from_numpy(scale_factor).to(bboxes.device)
if cfg is None:
return bboxes, scores
else:
det_bboxes, det_labels = multiclass_nms(
bboxes,
scores,
cfg.score_thr,
cfg.nms,
cfg.max_per_img,
score_factors=confids)
return det_bboxes, det_labels
@force_fp32(apply_to=('bbox_preds', ))
def refine_bboxes(self, rois, labels, bbox_preds, pos_is_gts, img_metas):
"""Refine bboxes during training.
Args:
rois (Tensor): Shape (n*bs, 5), where n is image number per GPU,
and bs is the sampled RoIs per image.
labels (Tensor): Shape (n*bs, ).
bbox_preds (list[Tensor]): Shape [(n*bs, num_buckets*2), \
(n*bs, num_buckets*2)].
pos_is_gts (list[Tensor]): Flags indicating if each positive bbox
is a gt bbox.
img_metas (list[dict]): Meta info of each image.
Returns:
list[Tensor]: Refined bboxes of each image in a mini-batch.
"""
img_ids = rois[:, 0].long().unique(sorted=True)
assert img_ids.numel() == len(img_metas)
bboxes_list = []
for i in range(len(img_metas)):
inds = torch.nonzero(
rois[:, 0] == i, as_tuple=False).squeeze(dim=1)
num_rois = inds.numel()
bboxes_ = rois[inds, 1:]
label_ = labels[inds]
edge_cls_preds, edge_offset_preds = bbox_preds
edge_cls_preds_ = edge_cls_preds[inds]
edge_offset_preds_ = edge_offset_preds[inds]
bbox_pred_ = [edge_cls_preds_, edge_offset_preds_]
img_meta_ = img_metas[i]
pos_is_gts_ = pos_is_gts[i]
bboxes = self.regress_by_class(bboxes_, label_, bbox_pred_,
img_meta_)
# filter gt bboxes
pos_keep = 1 - pos_is_gts_
keep_inds = pos_is_gts_.new_ones(num_rois)
keep_inds[:len(pos_is_gts_)] = pos_keep
bboxes_list.append(bboxes[keep_inds.type(torch.bool)])
return bboxes_list
@force_fp32(apply_to=('bbox_pred', ))
def regress_by_class(self, rois, label, bbox_pred, img_meta):
"""Regress the bbox for the predicted class. Used in Cascade R-CNN.
Args:
rois (Tensor): shape (n, 4) or (n, 5)
label (Tensor): shape (n, )
bbox_pred (list[Tensor]): shape [(n, num_buckets *2), \
(n, num_buckets *2)]
img_meta (dict): Image meta info.
Returns:
Tensor: Regressed bboxes, the same shape as input rois.
"""
assert rois.size(1) == 4 or rois.size(1) == 5
if rois.size(1) == 4:
new_rois, _ = self.bbox_coder.decode(rois, bbox_pred,
img_meta['img_shape'])
else:
bboxes, _ = self.bbox_coder.decode(rois[:, 1:], bbox_pred,
img_meta['img_shape'])
new_rois = torch.cat((rois[:, [0]], bboxes), dim=1)
return new_rois