Update ml_engine/indicators.py
Browse files- ml_engine/indicators.py +65 -66
ml_engine/indicators.py
CHANGED
|
@@ -1,9 +1,18 @@
|
|
| 1 |
-
# ml_engine/indicators.py (
|
| 2 |
import pandas as pd
|
| 3 |
import pandas_ta as ta
|
| 4 |
import numpy as np
|
| 5 |
from typing import Dict
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
class AdvancedTechnicalAnalyzer:
|
| 8 |
def __init__(self):
|
| 9 |
# (هذا الكونفيغ سيبقى للاستخدامات القديمة مثل الحارس 1m)
|
|
@@ -15,16 +24,13 @@ class AdvancedTechnicalAnalyzer:
|
|
| 15 |
'cycle': ['hull_ma', 'supertrend', 'zigzag', 'fisher_transform']
|
| 16 |
}
|
| 17 |
|
| 18 |
-
# 🔴 --- START OF
|
| 19 |
def calculate_v9_smart_features(self, dataframe: pd.DataFrame) -> Dict[str, float]:
|
| 20 |
"""
|
| 21 |
-
(
|
| 22 |
-
حساب
|
| 23 |
-
هذه الدالة مصممة لتغذية نموذج ML (مثل LightGBM) ببيانات غنية.
|
| 24 |
"""
|
| 25 |
if dataframe.empty or dataframe is None or len(dataframe) < 100:
|
| 26 |
-
# (نحتاج 100 شمعة على الأقل لحساب الميزات الطويلة المدى مثل min(100))
|
| 27 |
-
# (ملاحظة: data_manager V9.1 سيطلب 200 شمعة لضمان عمل ema_200)
|
| 28 |
return {}
|
| 29 |
|
| 30 |
features = {}
|
|
@@ -41,84 +47,77 @@ class AdvancedTechnicalAnalyzer:
|
|
| 41 |
mfi_series = ta.mfi(high, low, close, volume, length=14)
|
| 42 |
atr_series = ta.atr(high, low, close, length=14)
|
| 43 |
adx_data = ta.adx(high, low, close, length=14)
|
|
|
|
| 44 |
|
| 45 |
-
# --- 2. ميزات "نسب السعر" (Price Ratios)
|
| 46 |
-
# (نسبة السعر إلى المتوسطات المتحركة)
|
| 47 |
ema_50 = ta.ema(close, length=50).iloc[-1]
|
| 48 |
ema_200 = ta.ema(close, length=200).iloc[-1]
|
| 49 |
-
if ema_50 and ema_50 > 0:
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
# (نسبة السعر إلى أدنى/أعلى سعر)
|
| 55 |
-
min_100 = low.tail(100).min()
|
| 56 |
-
max_100 = high.tail(100).max()
|
| 57 |
-
if min_100 and min_100 > 0:
|
| 58 |
-
features['price_to_min_100'] = (current_price / min_100) - 1
|
| 59 |
-
if max_100 and max_100 > 0:
|
| 60 |
-
features['price_to_max_100'] = (current_price / max_100) - 1
|
| 61 |
|
| 62 |
-
# --- 3. ميزات "الميل" (Slope)
|
| 63 |
ema_14 = ta.ema(close, length=14).iloc[-1]
|
| 64 |
-
if ema_14 and ema_50:
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
# --- 4. ميزات "الحجم" (Volume) و "السيولة" ---
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
vol_std_50 = volume.tail(50).std()
|
| 71 |
-
if vol_std_50 and vol_std_50 > 0:
|
| 72 |
-
features['volume_zscore_50'] = (volume.iloc[-1] - vol_ma_50) / vol_std_50
|
| 73 |
-
|
| 74 |
-
# (فجوة VWAP)
|
| 75 |
vwap = ta.vwap(high, low, close, volume).iloc[-1]
|
| 76 |
-
if vwap and vwap > 0:
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
# --- 5. ميزات "تجميعية" (Aggregative)
|
| 80 |
-
# (إحصائيات RSI)
|
| 81 |
if rsi_series is not None:
|
| 82 |
-
features['rsi_14'] = rsi_series.iloc[-1]
|
| 83 |
-
features['rsi_mean_10'] = rsi_series.tail(10).mean()
|
| 84 |
-
features['rsi_std_10'] = rsi_series.tail(10).std()
|
| 85 |
-
|
| 86 |
-
# (إحصائيات MFI)
|
| 87 |
if mfi_series is not None:
|
| 88 |
-
features['mfi_14'] = mfi_series.iloc[-1]
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
# (مؤشر ADX)
|
| 92 |
-
if adx_data is not None:
|
| 93 |
-
features['adx_14'] = adx_data['ADX_14'].iloc[-1]
|
| 94 |
|
| 95 |
# --- 6. ميزات "التقلب" (Volatility) ---
|
| 96 |
-
# (ATR كنسبة مئوية)
|
| 97 |
if atr_series is not None:
|
| 98 |
atr_val = atr_series.iloc[-1]
|
| 99 |
-
if atr_val and current_price > 0:
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
# (تطبيع العائد بالتقلب)
|
| 103 |
last_return = close.pct_change().iloc[-1]
|
| 104 |
-
if atr_val and atr_val > 0:
|
| 105 |
-
features['atr_normalized_return'] = last_return / atr_val
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
except Exception as e:
|
| 108 |
-
# (
|
| 109 |
-
#
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
# (تنظيف: إزالة NaN أو Inf وضمان أن القيم أرقام عشرية)
|
| 113 |
-
final_features = {}
|
| 114 |
for key, value in features.items():
|
| 115 |
-
if value is not None and np.isfinite(value):
|
| 116 |
-
|
| 117 |
-
else:
|
| 118 |
-
final_features[key] = 0.0 # (استبدال القيم غير الصالحة بـ 0.0)
|
| 119 |
-
|
| 120 |
return final_features
|
| 121 |
-
# 🔴 --- END OF
|
| 122 |
|
| 123 |
|
| 124 |
# -----------------------------------------------------------------
|
|
@@ -386,4 +385,4 @@ class AdvancedTechnicalAnalyzer:
|
|
| 386 |
|
| 387 |
return {key: value for key, value in cycle.items() if value is not None and not np.isnan(value)}
|
| 388 |
|
| 389 |
-
print("✅ ML Module: Technical Indicators loaded (
|
|
|
|
| 1 |
+
# ml_engine/indicators.py (V10.0 - Super-Brain Features)
|
| 2 |
import pandas as pd
|
| 3 |
import pandas_ta as ta
|
| 4 |
import numpy as np
|
| 5 |
from typing import Dict
|
| 6 |
|
| 7 |
+
try:
|
| 8 |
+
from hurst import compute_Hc
|
| 9 |
+
HURST_AVAILABLE = True
|
| 10 |
+
except ImportError:
|
| 11 |
+
print("⚠️ مكتبة 'hurst' غير موجودة. ميزة "مفتاح النظام" ستكون معطلة.")
|
| 12 |
+
print(" -> قم بتثبيتها: pip install hurst")
|
| 13 |
+
HURST_AVAILABLE = False
|
| 14 |
+
|
| 15 |
+
|
| 16 |
class AdvancedTechnicalAnalyzer:
|
| 17 |
def __init__(self):
|
| 18 |
# (هذا الكونفيغ سيبقى للاستخدامات القديمة مثل الحارس 1m)
|
|
|
|
| 24 |
'cycle': ['hull_ma', 'supertrend', 'zigzag', 'fisher_transform']
|
| 25 |
}
|
| 26 |
|
| 27 |
+
# 🔴 --- START OF UPDATED FUNCTION (V10.0 - Super-Brain) --- 🔴
|
| 28 |
def calculate_v9_smart_features(self, dataframe: pd.DataFrame) -> Dict[str, float]:
|
| 29 |
"""
|
| 30 |
+
(محدث V10.0) - (العقل الحسابي لنموذج V9.8)
|
| 31 |
+
حساب جميع الميزات المتقدمة (بما في ذلك Hurst, CMF, PPO, VROC)
|
|
|
|
| 32 |
"""
|
| 33 |
if dataframe.empty or dataframe is None or len(dataframe) < 100:
|
|
|
|
|
|
|
| 34 |
return {}
|
| 35 |
|
| 36 |
features = {}
|
|
|
|
| 47 |
mfi_series = ta.mfi(high, low, close, volume, length=14)
|
| 48 |
atr_series = ta.atr(high, low, close, length=14)
|
| 49 |
adx_data = ta.adx(high, low, close, length=14)
|
| 50 |
+
obv_series = ta.obv(close, volume)
|
| 51 |
|
| 52 |
+
# --- 2. ميزات "نسب السعر" (Price Ratios) ---
|
|
|
|
| 53 |
ema_50 = ta.ema(close, length=50).iloc[-1]
|
| 54 |
ema_200 = ta.ema(close, length=200).iloc[-1]
|
| 55 |
+
if ema_50 and ema_50 > 0: features['price_to_ema_50'] = (current_price / ema_50) - 1
|
| 56 |
+
if ema_200 and ema_200 > 0: features['price_to_ema_200'] = (current_price / ema_200) - 1
|
| 57 |
+
min_100 = low.tail(100).min(); max_100 = high.tail(100).max()
|
| 58 |
+
if min_100 and min_100 > 0: features['price_to_min_100'] = (current_price / min_100) - 1
|
| 59 |
+
if max_100 and max_100 > 0: features['price_to_max_100'] = (current_price / max_100) - 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
# --- 3. ميزات "الميل" (Slope) ---
|
| 62 |
ema_14 = ta.ema(close, length=14).iloc[-1]
|
| 63 |
+
if ema_14 and ema_50: features['slope_14_50'] = (ema_14 - ema_50) / 14
|
| 64 |
+
if adx_data is not None:
|
| 65 |
+
adx_series = adx_data['ADX_14']
|
| 66 |
+
adx_ema_5 = ta.ema(adx_series, length=5).iloc[-1]; adx_ema_15 = ta.ema(adx_series, length=15).iloc[-1]
|
| 67 |
+
if adx_ema_5 and adx_ema_15: features['adx_slope'] = (adx_ema_5 - adx_ema_15) / 5
|
| 68 |
|
| 69 |
# --- 4. ميزات "الحجم" (Volume) و "السيولة" ---
|
| 70 |
+
vol_ma_50 = volume.tail(50).mean(); vol_std_50 = volume.tail(50).std()
|
| 71 |
+
if vol_std_50 and vol_std_50 > 0: features['volume_zscore_50'] = (volume.iloc[-1] - vol_ma_50) / vol_std_50
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
vwap = ta.vwap(high, low, close, volume).iloc[-1]
|
| 73 |
+
if vwap and vwap > 0: features['vwap_gap'] = (current_price - vwap) / vwap
|
| 74 |
+
cmf = ta.cmf(high, low, close, volume, length=20)
|
| 75 |
+
if cmf is not None: features['cmf_20'] = cmf.iloc[-1]
|
| 76 |
+
vroc = ta.roc(volume, length=12)
|
| 77 |
+
if vroc is not None: features['vroc_12'] = vroc.iloc[-1]
|
| 78 |
+
if obv_series is not None:
|
| 79 |
+
obv_ema_10 = ta.ema(obv_series, length=10).iloc[-1]; obv_ema_30 = ta.ema(obv_series, length=30).iloc[-1]
|
| 80 |
+
if obv_ema_10 and obv_ema_30: features['obv_slope'] = (obv_ema_10 - obv_ema_30) / 10
|
| 81 |
|
| 82 |
+
# --- 5. ميزات "تجميعية" (Aggregative) ---
|
|
|
|
| 83 |
if rsi_series is not None:
|
| 84 |
+
features['rsi_14'] = rsi_series.iloc[-1]; features['rsi_mean_10'] = rsi_series.tail(10).mean(); features['rsi_std_10'] = rsi_series.tail(10).std()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
if mfi_series is not None:
|
| 86 |
+
features['mfi_14'] = mfi_series.iloc[-1]; features['mfi_mean_10'] = mfi_series.tail(10).mean()
|
| 87 |
+
if adx_data is not None: features['adx_14'] = adx_data['ADX_14'].iloc[-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
# --- 6. ميزات "التقلب" (Volatility) ---
|
|
|
|
| 90 |
if atr_series is not None:
|
| 91 |
atr_val = atr_series.iloc[-1]
|
| 92 |
+
if atr_val and current_price > 0: features['atr_percent'] = (atr_val / current_price) * 100
|
| 93 |
+
vol_of_vol_series = ta.atr(atr_series, length=10) # (Vol-of-Vol)
|
| 94 |
+
if vol_of_vol_series is not None: features['vol_of_vol'] = vol_of_vol_series.iloc[-1]
|
|
|
|
| 95 |
last_return = close.pct_change().iloc[-1]
|
| 96 |
+
if atr_val and atr_val > 0: features['atr_normalized_return'] = last_return / atr_val
|
|
|
|
| 97 |
|
| 98 |
+
# --- 7. (جديد V9.8) ميزات النظام (Regime Features) ---
|
| 99 |
+
if HURST_AVAILABLE:
|
| 100 |
+
hurst_series = close.tail(100).to_numpy()
|
| 101 |
+
H, c, data = compute_Hc(hurst_series, kind='price', simplified=True)
|
| 102 |
+
features['hurst'] = H
|
| 103 |
+
else:
|
| 104 |
+
features['hurst'] = 0.5 # (محايد إذا لم يتم تثبيت المكتبة)
|
| 105 |
+
|
| 106 |
+
ppo_data = ta.ppo(close, fast=12, slow=26, signal=9)
|
| 107 |
+
if ppo_data is not None:
|
| 108 |
+
features['ppo_hist'] = ppo_data['PPOh_12_26_9'].iloc[-1]
|
| 109 |
+
features['ppo_line'] = ppo_data['PPO_12_26_9'].iloc[-1]
|
| 110 |
+
|
| 111 |
except Exception as e:
|
| 112 |
+
# print(f"⚠️ خطأ في حساب ميزات V9.8 الذكية: {e}");
|
| 113 |
+
pass # (نتجاهل الأخطاء في التداول الحي ونعيد ميزات جزئية)
|
| 114 |
+
|
| 115 |
+
final_features = {};
|
|
|
|
|
|
|
| 116 |
for key, value in features.items():
|
| 117 |
+
if value is not None and np.isfinite(value): final_features[key] = float(value)
|
| 118 |
+
else: final_features[key] = 0.0
|
|
|
|
|
|
|
|
|
|
| 119 |
return final_features
|
| 120 |
+
# 🔴 --- END OF UPDATED FUNCTION (V10.0) --- 🔴
|
| 121 |
|
| 122 |
|
| 123 |
# -----------------------------------------------------------------
|
|
|
|
| 385 |
|
| 386 |
return {key: value for key, value in cycle.items() if value is not None and not np.isnan(value)}
|
| 387 |
|
| 388 |
+
print("✅ ML Module: Technical Indicators loaded (V10.0 - Super-Brain Features)")
|