Update ml_engine/monte_carlo.py
Browse files- ml_engine/monte_carlo.py +73 -24
ml_engine/monte_carlo.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# ml_engine/monte_carlo.py (Updated to
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
from arch import arch_model
|
|
@@ -24,10 +24,8 @@ def _sanitize_results_for_json(results_dict):
|
|
| 24 |
return [_sanitize_results_for_json(v) for v in results_dict]
|
| 25 |
elif isinstance(results_dict, np.ndarray):
|
| 26 |
return results_dict.tolist()
|
| 27 |
-
# (Removed np.float_ which is deprecated in NumPy 2.0)
|
| 28 |
elif isinstance(results_dict, (np.float64, np.float32)):
|
| 29 |
return float(results_dict)
|
| 30 |
-
# (Removed np.int_ which is deprecated in NumPy 2.0)
|
| 31 |
elif isinstance(results_dict, (np.int64, np.int32)):
|
| 32 |
return int(results_dict)
|
| 33 |
else:
|
|
@@ -37,10 +35,74 @@ def _sanitize_results_for_json(results_dict):
|
|
| 37 |
class MonteCarloAnalyzer:
|
| 38 |
def __init__(self):
|
| 39 |
self.simulation_results = {}
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
async def generate_1h_price_distribution(self, ohlcv_data, target_profit_percent=0.005):
|
| 42 |
"""
|
| 43 |
-
(المرحلة 1 - سريعة)
|
| 44 |
"""
|
| 45 |
try:
|
| 46 |
if not ohlcv_data or '1h' not in ohlcv_data or len(ohlcv_data['1h']) < 30:
|
|
@@ -74,13 +136,9 @@ class MonteCarloAnalyzer:
|
|
| 74 |
mean_return = np.mean(log_returns)
|
| 75 |
std_return = np.std(log_returns)
|
| 76 |
|
| 77 |
-
|
| 78 |
-
# واقي العملة المستقرة: إذا كان الانحراف المعياري (التقلب) شبه صفري، أوقف التحليل
|
| 79 |
-
if std_return < 1e-5: # (1e-5 هو 0.00001)
|
| 80 |
-
print(f" [MC Guard] {ohlcv_data.get('symbol', 'Symbol')} - Zero volatility detected. Stopping MC.")
|
| 81 |
self.simulation_results = {'error': 'Zero volatility detected (Stablecoin?)'}
|
| 82 |
return None
|
| 83 |
-
# 🔴 --- END OF CHANGE --- 🔴
|
| 84 |
|
| 85 |
num_simulations = 5000
|
| 86 |
t_df = 10
|
|
@@ -129,7 +187,6 @@ class MonteCarloAnalyzer:
|
|
| 129 |
'raw_simulated_prices': simulated_prices[:100]
|
| 130 |
}
|
| 131 |
|
| 132 |
-
# (Sanitize Phase 1 results as well)
|
| 133 |
return _sanitize_results_for_json(self.simulation_results)
|
| 134 |
|
| 135 |
except Exception as e:
|
|
@@ -140,7 +197,7 @@ class MonteCarloAnalyzer:
|
|
| 140 |
|
| 141 |
async def generate_1h_distribution_advanced(self, ohlcv_data, target_profit_percent=0.005):
|
| 142 |
"""
|
| 143 |
-
(المرحلة 2+3 - متقدمة)
|
| 144 |
"""
|
| 145 |
try:
|
| 146 |
if not ohlcv_data or '1h' not in ohlcv_data or len(ohlcv_data['1h']) < 50:
|
|
@@ -161,27 +218,20 @@ class MonteCarloAnalyzer:
|
|
| 161 |
df['log_returns'] = np.log(df['close'] / df['close'].shift(1)).fillna(0)
|
| 162 |
log_returns_series = df['log_returns'].replace([np.inf, -np.inf], 0)
|
| 163 |
|
| 164 |
-
# 🔴 --- START OF CHANGE (V6.2 - STABLECOIN GUARD) --- 🔴
|
| 165 |
-
# واقي العملة المستقرة: التحقق من التقلب قبل بدء التحليل
|
| 166 |
std_return_check = np.std(log_returns_series.iloc[-30:])
|
| 167 |
-
if std_return_check < 1e-5: # (
|
| 168 |
-
print(f" [MC Guard Adv] {ohlcv_data.get('symbol', 'Symbol')} - Zero volatility detected. Stopping GARCH/LGBM.")
|
| 169 |
self.simulation_results = {'error': 'Zero volatility detected (Stablecoin?)'}
|
| 170 |
-
# العودة إلى المرحلة 1 (التي ستمسك بها أيضاً وترجع None)
|
| 171 |
return await self.generate_1h_price_distribution(ohlcv_data, target_profit_percent)
|
| 172 |
-
# 🔴 --- END OF CHANGE --- 🔴
|
| 173 |
|
| 174 |
# 3. (Phase 2) توقع التقلب باستخدام GARCH(1,1)
|
| 175 |
try:
|
| 176 |
-
# (Rescale by 100, and set rescale=False to stop GARCH from auto-scaling)
|
| 177 |
garch_model = arch_model(log_returns_series * 100, vol='Garch', p=1, q=1, dist='t', rescale=False)
|
| 178 |
res = garch_model.fit(update_freq=0, disp='off')
|
| 179 |
forecast = res.forecast(horizon=1)
|
| 180 |
-
# (Divide by 100^2 = 10000)
|
| 181 |
forecasted_var = forecast.variance.iloc[-1, 0] / (100**2)
|
| 182 |
forecasted_std_return = np.sqrt(forecasted_var)
|
| 183 |
except Exception as garch_err:
|
| 184 |
-
forecasted_std_return = std_return_check
|
| 185 |
print(f"⚠️ GARCH failed, using std: {garch_err}")
|
| 186 |
|
| 187 |
|
|
@@ -195,7 +245,7 @@ class MonteCarloAnalyzer:
|
|
| 195 |
delta = df['close'].diff()
|
| 196 |
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
| 197 |
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
|
| 198 |
-
rs = gain / (loss + 1e-9)
|
| 199 |
df['rsi'] = 100 - (100 / (1 + rs))
|
| 200 |
df['macd_hist'] = df['close'].ewm(span=12).mean() - df['close'].ewm(span=26).mean()
|
| 201 |
|
|
@@ -281,7 +331,6 @@ class MonteCarloAnalyzer:
|
|
| 281 |
'raw_simulated_prices': simulated_prices[:100]
|
| 282 |
}
|
| 283 |
|
| 284 |
-
# (Sanitize the results before returning)
|
| 285 |
return _sanitize_results_for_json(self.simulation_results)
|
| 286 |
|
| 287 |
except Exception as e:
|
|
@@ -303,4 +352,4 @@ class MonteCarloAnalyzer:
|
|
| 303 |
else: return 1.0
|
| 304 |
except Exception: return 1.0
|
| 305 |
|
| 306 |
-
print("✅ ML Module: Advanced Monte Carlo Analyzer loaded (
|
|
|
|
| 1 |
+
# ml_engine/monte_carlo.py (Updated to V10.0 - Added Simple Sim for Ranker)
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
from arch import arch_model
|
|
|
|
| 24 |
return [_sanitize_results_for_json(v) for v in results_dict]
|
| 25 |
elif isinstance(results_dict, np.ndarray):
|
| 26 |
return results_dict.tolist()
|
|
|
|
| 27 |
elif isinstance(results_dict, (np.float64, np.float32)):
|
| 28 |
return float(results_dict)
|
|
|
|
| 29 |
elif isinstance(results_dict, (np.int64, np.int32)):
|
| 30 |
return int(results_dict)
|
| 31 |
else:
|
|
|
|
| 35 |
class MonteCarloAnalyzer:
|
| 36 |
def __init__(self):
|
| 37 |
self.simulation_results = {}
|
| 38 |
+
|
| 39 |
+
# 🔴 --- START OF NEW FUNCTION (V10.0) --- 🔴
|
| 40 |
+
# (هذه الدالة هي التي يحتاجها الرانكر V9.8)
|
| 41 |
+
def generate_1h_price_distribution_simple(self, closes_np: np.ndarray, target_profit_percent=0.005) -> dict:
|
| 42 |
+
"""
|
| 43 |
+
(V10.0) نسخة سريعة جداً (غير متزامنة) مخصصة للرانكر.
|
| 44 |
+
تقبل numpy array مباشرة وتُرجع الميزات المطلوبة فقط.
|
| 45 |
+
"""
|
| 46 |
+
try:
|
| 47 |
+
# (نحتاج 100 شمعة كما في Colab)
|
| 48 |
+
if len(closes_np) < 30:
|
| 49 |
+
return {'mc_prob_gain': 0.5, 'mc_var_95_pct': 0.0, 'error': True}
|
| 50 |
+
|
| 51 |
+
current_price = closes_np[-1]
|
| 52 |
+
if current_price <= 0:
|
| 53 |
+
return {'mc_prob_gain': 0.5, 'mc_var_95_pct': 0.0, 'error': True}
|
| 54 |
+
|
| 55 |
+
log_returns = np.log(closes_np[1:] / closes_np[:-1])
|
| 56 |
+
log_returns = log_returns[~np.isnan(log_returns) & ~np.isinf(log_returns)]
|
| 57 |
+
|
| 58 |
+
if len(log_returns) < 20:
|
| 59 |
+
return {'mc_prob_gain': 0.5, 'mc_var_95_pct': 0.0, 'error': True}
|
| 60 |
+
|
| 61 |
+
mean_return = np.mean(log_returns)
|
| 62 |
+
std_return = np.std(log_returns)
|
| 63 |
+
|
| 64 |
+
if std_return < 1e-5: # (واقي العملة المستقرة)
|
| 65 |
+
return {'mc_prob_gain': 0.5, 'mc_var_95_pct': 0.0, 'error': True}
|
| 66 |
+
|
| 67 |
+
num_simulations = 1000 # (سريعة، كما في Colab)
|
| 68 |
+
t_df = 10
|
| 69 |
+
jump_lambda = 0.05
|
| 70 |
+
jump_mean = 0.0
|
| 71 |
+
jump_std = std_return * 3.0
|
| 72 |
+
|
| 73 |
+
drift = (mean_return - 0.5 * std_return**2)
|
| 74 |
+
diffusion = std_return * np.random.standard_t(df=t_df, size=num_simulations)
|
| 75 |
+
jump_mask = np.random.rand(num_simulations) < jump_lambda
|
| 76 |
+
jump_sizes = np.random.normal(jump_mean, jump_std, size=num_simulations)
|
| 77 |
+
jump_component = np.zeros(num_simulations)
|
| 78 |
+
jump_component[jump_mask] = jump_sizes[jump_mask]
|
| 79 |
+
|
| 80 |
+
simulated_log_returns = drift + diffusion + jump_component
|
| 81 |
+
simulated_prices = current_price * np.exp(simulated_log_returns)
|
| 82 |
+
|
| 83 |
+
percentiles = np.percentile(simulated_prices, [5])
|
| 84 |
+
VaR_95_price = percentiles[0]
|
| 85 |
+
# (كنسبة مئوية، مع واقي من القسمة على صفر)
|
| 86 |
+
VaR_95_value = (current_price - VaR_95_price) / (current_price + 1e-9)
|
| 87 |
+
|
| 88 |
+
target_price = current_price * (1 + target_profit_percent)
|
| 89 |
+
probability_of_gain = np.mean(simulated_prices >= target_price)
|
| 90 |
+
|
| 91 |
+
return {
|
| 92 |
+
'mc_prob_gain': probability_of_gain,
|
| 93 |
+
'mc_var_95_pct': VaR_95_value,
|
| 94 |
+
'error': False
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
except Exception:
|
| 98 |
+
# (إرجاع قيم محايدة في حالة الفشل)
|
| 99 |
+
return {'mc_prob_gain': 0.5, 'mc_var_95_pct': 0.0, 'error': True}
|
| 100 |
+
# 🔴 --- END OF NEW FUNCTION (V10.0) --- 🔴
|
| 101 |
+
|
| 102 |
+
|
| 103 |
async def generate_1h_price_distribution(self, ohlcv_data, target_profit_percent=0.005):
|
| 104 |
"""
|
| 105 |
+
(المرحلة 1 - سريعة) - (للاستخدامات القديمة إن وجدت)
|
| 106 |
"""
|
| 107 |
try:
|
| 108 |
if not ohlcv_data or '1h' not in ohlcv_data or len(ohlcv_data['1h']) < 30:
|
|
|
|
| 136 |
mean_return = np.mean(log_returns)
|
| 137 |
std_return = np.std(log_returns)
|
| 138 |
|
| 139 |
+
if std_return < 1e-5: # (واقي العملة المستقرة)
|
|
|
|
|
|
|
|
|
|
| 140 |
self.simulation_results = {'error': 'Zero volatility detected (Stablecoin?)'}
|
| 141 |
return None
|
|
|
|
| 142 |
|
| 143 |
num_simulations = 5000
|
| 144 |
t_df = 10
|
|
|
|
| 187 |
'raw_simulated_prices': simulated_prices[:100]
|
| 188 |
}
|
| 189 |
|
|
|
|
| 190 |
return _sanitize_results_for_json(self.simulation_results)
|
| 191 |
|
| 192 |
except Exception as e:
|
|
|
|
| 197 |
|
| 198 |
async def generate_1h_distribution_advanced(self, ohlcv_data, target_profit_percent=0.005):
|
| 199 |
"""
|
| 200 |
+
(المرحلة 2+3 - متقدمة) - (للاستخدام في الطبقة 2)
|
| 201 |
"""
|
| 202 |
try:
|
| 203 |
if not ohlcv_data or '1h' not in ohlcv_data or len(ohlcv_data['1h']) < 50:
|
|
|
|
| 218 |
df['log_returns'] = np.log(df['close'] / df['close'].shift(1)).fillna(0)
|
| 219 |
log_returns_series = df['log_returns'].replace([np.inf, -np.inf], 0)
|
| 220 |
|
|
|
|
|
|
|
| 221 |
std_return_check = np.std(log_returns_series.iloc[-30:])
|
| 222 |
+
if std_return_check < 1e-5: # (واقي العملة المستقرة)
|
|
|
|
| 223 |
self.simulation_results = {'error': 'Zero volatility detected (Stablecoin?)'}
|
|
|
|
| 224 |
return await self.generate_1h_price_distribution(ohlcv_data, target_profit_percent)
|
|
|
|
| 225 |
|
| 226 |
# 3. (Phase 2) توقع التقلب باستخدام GARCH(1,1)
|
| 227 |
try:
|
|
|
|
| 228 |
garch_model = arch_model(log_returns_series * 100, vol='Garch', p=1, q=1, dist='t', rescale=False)
|
| 229 |
res = garch_model.fit(update_freq=0, disp='off')
|
| 230 |
forecast = res.forecast(horizon=1)
|
|
|
|
| 231 |
forecasted_var = forecast.variance.iloc[-1, 0] / (100**2)
|
| 232 |
forecasted_std_return = np.sqrt(forecasted_var)
|
| 233 |
except Exception as garch_err:
|
| 234 |
+
forecasted_std_return = std_return_check
|
| 235 |
print(f"⚠️ GARCH failed, using std: {garch_err}")
|
| 236 |
|
| 237 |
|
|
|
|
| 245 |
delta = df['close'].diff()
|
| 246 |
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
| 247 |
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
|
| 248 |
+
rs = gain / (loss + 1e-9)
|
| 249 |
df['rsi'] = 100 - (100 / (1 + rs))
|
| 250 |
df['macd_hist'] = df['close'].ewm(span=12).mean() - df['close'].ewm(span=26).mean()
|
| 251 |
|
|
|
|
| 331 |
'raw_simulated_prices': simulated_prices[:100]
|
| 332 |
}
|
| 333 |
|
|
|
|
| 334 |
return _sanitize_results_for_json(self.simulation_results)
|
| 335 |
|
| 336 |
except Exception as e:
|
|
|
|
| 352 |
else: return 1.0
|
| 353 |
except Exception: return 1.0
|
| 354 |
|
| 355 |
+
print("✅ ML Module: Advanced Monte Carlo Analyzer loaded (V10.0 - Simple Sim Added)")
|