Spaces:
Running
Running
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import torch | |
| import pytorch_lightning as pl | |
| import numpy as np | |
| class SpatialEncoder(pl.LightningModule): | |
| def __init__(self, | |
| sp_level=1, | |
| sp_type="rel_z_decay", | |
| scale=1.0, | |
| n_kpt=24, | |
| sigma=0.2): | |
| super().__init__() | |
| self.sp_type = sp_type | |
| self.sp_level = sp_level | |
| self.n_kpt = n_kpt | |
| self.scale = scale | |
| self.sigma = sigma | |
| def position_embedding(x, nlevels, scale=1.0): | |
| """ | |
| args: | |
| x: (B, N, C) | |
| return: | |
| (B, N, C * n_levels * 2) | |
| """ | |
| if nlevels <= 0: | |
| return x | |
| vec = SpatialEncoder.pe_vector(nlevels, x.device, scale) | |
| B, N, _ = x.shape | |
| y = x[:, :, None, :] * vec[None, None, :, None] | |
| z = torch.cat((torch.sin(y), torch.cos(y)), axis=-1).view(B, N, -1) | |
| return torch.cat([x, z], -1) | |
| def pe_vector(nlevels, device, scale=1.0): | |
| v, val = [], 1 | |
| for _ in range(nlevels): | |
| v.append(scale * np.pi * val) | |
| val *= 2 | |
| return torch.from_numpy(np.asarray(v, dtype=np.float32)).to(device) | |
| def get_dim(self): | |
| if self.sp_type in ["z", "rel_z", "rel_z_decay"]: | |
| if "rel" in self.sp_type: | |
| return (1 + 2 * self.sp_level) * self.n_kpt | |
| else: | |
| return 1 + 2 * self.sp_level | |
| elif "xyz" in self.sp_type: | |
| if "rel" in self.sp_type: | |
| return (1 + 2 * self.sp_level) * 3 * self.n_kpt | |
| else: | |
| return (1 + 2 * self.sp_level) * 3 | |
| return 0 | |
| def forward(self, cxyz, kptxyz): | |
| B, N = cxyz.shape[:2] | |
| K = kptxyz.shape[1] | |
| dz = cxyz[:, :, None, 2:3] - kptxyz[:, None, :, 2:3] | |
| dxyz = cxyz[:, :, None] - kptxyz[:, None, :] | |
| # (B, N, K) | |
| weight = torch.exp(-(dxyz**2).sum(-1) / (2.0 * (self.sigma**2))) | |
| # position embedding ( B, N, K * (2*n_levels+1) ) | |
| out = self.position_embedding(dz.view(B, N, K), self.sp_level) | |
| # BV,N,K,(2*n_levels+1) * B,N,K,1 = B,N,K*(2*n_levels+1) -> BV,K*(2*n_levels+1),N | |
| out = (out.view(B, N, -1, K) * weight[:, :, None]).view(B, N, -1).permute(0,2,1) | |
| return out | |
| if __name__ == "__main__": | |
| pts = torch.randn(2, 10000, 3).to("cuda") | |
| kpts = torch.randn(2, 24, 3).to("cuda") | |
| sp_encoder = SpatialEncoder(sp_level=3, | |
| sp_type="rel_z_decay", | |
| scale=1.0, | |
| n_kpt=24, | |
| sigma=0.1).to("cuda") | |
| out = sp_encoder(pts, kpts) | |
| print(out.shape) | |