|
|
|
|
|
|
|
""" |
|
This script contains the main inference pipeline for processing audio and image inputs to generate a video output. |
|
|
|
The script imports necessary packages and classes, defines a neural network model, |
|
and contains functions for processing audio embeddings and performing inference. |
|
|
|
The main inference process is outlined in the following steps: |
|
1. Initialize the configuration. |
|
2. Set up runtime variables. |
|
3. Prepare the input data for inference (source image, face mask, and face embeddings). |
|
4. Process the audio embeddings. |
|
5. Build and freeze the model and scheduler. |
|
6. Run the inference loop and save the result. |
|
|
|
Usage: |
|
This script can be run from the command line with the following arguments: |
|
- audio_path: Path to the audio file. |
|
- image_path: Path to the source image. |
|
- face_mask_path: Path to the face mask image. |
|
- face_emb_path: Path to the face embeddings file. |
|
- output_path: Path to save the output video. |
|
|
|
Example: |
|
python scripts/inference.py --audio_path audio.wav --image_path image.jpg |
|
--face_mask_path face_mask.png --face_emb_path face_emb.pt --output_path output.mp4 |
|
""" |
|
|
|
import argparse |
|
import os |
|
|
|
import torch |
|
from diffusers import AutoencoderKL, DDIMScheduler |
|
from omegaconf import OmegaConf |
|
from torch import nn |
|
|
|
from hallo.animate.face_animate import FaceAnimatePipeline |
|
from hallo.datasets.audio_processor import AudioProcessor |
|
from hallo.datasets.image_processor import ImageProcessor |
|
from hallo.models.audio_proj import AudioProjModel |
|
from hallo.models.face_locator import FaceLocator |
|
from hallo.models.image_proj import ImageProjModel |
|
from hallo.models.unet_2d_condition import UNet2DConditionModel |
|
from hallo.models.unet_3d import UNet3DConditionModel |
|
from hallo.utils.util import tensor_to_video |
|
|
|
|
|
class Net(nn.Module): |
|
""" |
|
The Net class combines all the necessary modules for the inference process. |
|
|
|
Args: |
|
reference_unet (UNet2DConditionModel): The UNet2DConditionModel used as a reference for inference. |
|
denoising_unet (UNet3DConditionModel): The UNet3DConditionModel used for denoising the input audio. |
|
face_locator (FaceLocator): The FaceLocator model used to locate the face in the input image. |
|
imageproj (nn.Module): The ImageProjector model used to project the source image onto the face. |
|
audioproj (nn.Module): The AudioProjector model used to project the audio embeddings onto the face. |
|
""" |
|
def __init__( |
|
self, |
|
reference_unet: UNet2DConditionModel, |
|
denoising_unet: UNet3DConditionModel, |
|
face_locator: FaceLocator, |
|
imageproj, |
|
audioproj, |
|
): |
|
super().__init__() |
|
self.reference_unet = reference_unet |
|
self.denoising_unet = denoising_unet |
|
self.face_locator = face_locator |
|
self.imageproj = imageproj |
|
self.audioproj = audioproj |
|
|
|
def forward(self,): |
|
""" |
|
empty function to override abstract function of nn Module |
|
""" |
|
|
|
def get_modules(self): |
|
""" |
|
Simple method to avoid too-few-public-methods pylint error |
|
""" |
|
return { |
|
"reference_unet": self.reference_unet, |
|
"denoising_unet": self.denoising_unet, |
|
"face_locator": self.face_locator, |
|
"imageproj": self.imageproj, |
|
"audioproj": self.audioproj, |
|
} |
|
|
|
|
|
def process_audio_emb(audio_emb): |
|
""" |
|
Process the audio embedding to concatenate with other tensors. |
|
|
|
Parameters: |
|
audio_emb (torch.Tensor): The audio embedding tensor to process. |
|
|
|
Returns: |
|
concatenated_tensors (List[torch.Tensor]): The concatenated tensor list. |
|
""" |
|
concatenated_tensors = [] |
|
|
|
for i in range(audio_emb.shape[0]): |
|
vectors_to_concat = [ |
|
audio_emb[max(min(i + j, audio_emb.shape[0]-1), 0)]for j in range(-2, 3)] |
|
concatenated_tensors.append(torch.stack(vectors_to_concat, dim=0)) |
|
|
|
audio_emb = torch.stack(concatenated_tensors, dim=0) |
|
|
|
return audio_emb |
|
|
|
|
|
|
|
def inference_process(args: argparse.Namespace): |
|
""" |
|
Perform inference processing. |
|
|
|
Args: |
|
args (argparse.Namespace): Command-line arguments. |
|
|
|
This function initializes the configuration for the inference process. It sets up the necessary |
|
modules and variables to prepare for the upcoming inference steps. |
|
""" |
|
|
|
config = OmegaConf.load(args.config) |
|
config = OmegaConf.merge(config, vars(args)) |
|
source_image_path = config.source_image |
|
driving_audio_path = config.driving_audio |
|
save_path = config.save_path |
|
if not os.path.exists(save_path): |
|
os.makedirs(save_path) |
|
motion_scale = [config.pose_weight, config.face_weight, config.lip_weight] |
|
if args.checkpoint is not None: |
|
config.audio_ckpt_dir = args.checkpoint |
|
|
|
device = torch.device( |
|
"cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
if config.weight_dtype == "fp16": |
|
weight_dtype = torch.float16 |
|
elif config.weight_dtype == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
elif config.weight_dtype == "fp32": |
|
weight_dtype = torch.float32 |
|
else: |
|
weight_dtype = torch.float32 |
|
|
|
|
|
|
|
img_size = (config.data.source_image.width, |
|
config.data.source_image.height) |
|
clip_length = config.data.n_sample_frames |
|
face_analysis_model_path = config.face_analysis.model_path |
|
with ImageProcessor(img_size, face_analysis_model_path) as image_processor: |
|
source_image_pixels, \ |
|
source_image_face_region, \ |
|
source_image_face_emb, \ |
|
source_image_full_mask, \ |
|
source_image_face_mask, \ |
|
source_image_lip_mask = image_processor.preprocess( |
|
source_image_path, save_path, config.face_expand_ratio) |
|
|
|
|
|
sample_rate = config.data.driving_audio.sample_rate |
|
assert sample_rate == 16000, "audio sample rate must be 16000" |
|
fps = config.data.export_video.fps |
|
wav2vec_model_path = config.wav2vec.model_path |
|
wav2vec_only_last_features = config.wav2vec.features == "last" |
|
audio_separator_model_file = config.audio_separator.model_path |
|
with AudioProcessor( |
|
sample_rate, |
|
fps, |
|
wav2vec_model_path, |
|
wav2vec_only_last_features, |
|
os.path.dirname(audio_separator_model_file), |
|
os.path.basename(audio_separator_model_file), |
|
os.path.join(save_path, "audio_preprocess") |
|
) as audio_processor: |
|
audio_emb = audio_processor.preprocess(driving_audio_path) |
|
|
|
|
|
sched_kwargs = OmegaConf.to_container(config.noise_scheduler_kwargs) |
|
if config.enable_zero_snr: |
|
sched_kwargs.update( |
|
rescale_betas_zero_snr=True, |
|
timestep_spacing="trailing", |
|
prediction_type="v_prediction", |
|
) |
|
val_noise_scheduler = DDIMScheduler(**sched_kwargs) |
|
sched_kwargs.update({"beta_schedule": "scaled_linear"}) |
|
|
|
vae = AutoencoderKL.from_pretrained(config.vae.model_path) |
|
reference_unet = UNet2DConditionModel.from_pretrained( |
|
config.base_model_path, subfolder="unet") |
|
denoising_unet = UNet3DConditionModel.from_pretrained_2d( |
|
config.base_model_path, |
|
config.motion_module_path, |
|
subfolder="unet", |
|
unet_additional_kwargs=OmegaConf.to_container( |
|
config.unet_additional_kwargs), |
|
use_landmark=False, |
|
) |
|
face_locator = FaceLocator(conditioning_embedding_channels=320) |
|
image_proj = ImageProjModel( |
|
cross_attention_dim=denoising_unet.config.cross_attention_dim, |
|
clip_embeddings_dim=512, |
|
clip_extra_context_tokens=4, |
|
) |
|
|
|
audio_proj = AudioProjModel( |
|
seq_len=5, |
|
blocks=12, |
|
channels=768, |
|
intermediate_dim=512, |
|
output_dim=768, |
|
context_tokens=32, |
|
).to(device=device, dtype=weight_dtype) |
|
|
|
audio_ckpt_dir = config.audio_ckpt_dir |
|
|
|
|
|
|
|
vae.requires_grad_(False) |
|
image_proj.requires_grad_(False) |
|
reference_unet.requires_grad_(False) |
|
denoising_unet.requires_grad_(False) |
|
face_locator.requires_grad_(False) |
|
audio_proj.requires_grad_(False) |
|
|
|
reference_unet.enable_gradient_checkpointing() |
|
denoising_unet.enable_gradient_checkpointing() |
|
|
|
net = Net( |
|
reference_unet, |
|
denoising_unet, |
|
face_locator, |
|
image_proj, |
|
audio_proj, |
|
) |
|
|
|
m,u = net.load_state_dict( |
|
torch.load( |
|
os.path.join(audio_ckpt_dir, "net.pth"), |
|
map_location="cpu", |
|
), |
|
) |
|
assert len(m) == 0 and len(u) == 0, "Fail to load correct checkpoint." |
|
print("loaded weight from ", os.path.join(audio_ckpt_dir, "net.pth")) |
|
|
|
|
|
pipeline = FaceAnimatePipeline( |
|
vae=vae, |
|
reference_unet=net.reference_unet, |
|
denoising_unet=net.denoising_unet, |
|
face_locator=net.face_locator, |
|
scheduler=val_noise_scheduler, |
|
image_proj=net.imageproj, |
|
) |
|
pipeline.to(device=device, dtype=weight_dtype) |
|
|
|
audio_emb = process_audio_emb(audio_emb) |
|
|
|
source_image_pixels = source_image_pixels.unsqueeze(0) |
|
source_image_face_region = source_image_face_region.unsqueeze(0) |
|
source_image_face_emb = source_image_face_emb.reshape(1, -1) |
|
source_image_face_emb = torch.tensor(source_image_face_emb) |
|
|
|
source_image_full_mask = [ |
|
(mask.repeat(clip_length, 1)) |
|
for mask in source_image_full_mask |
|
] |
|
source_image_face_mask = [ |
|
(mask.repeat(clip_length, 1)) |
|
for mask in source_image_face_mask |
|
] |
|
source_image_lip_mask = [ |
|
(mask.repeat(clip_length, 1)) |
|
for mask in source_image_lip_mask |
|
] |
|
|
|
|
|
times = audio_emb.shape[0] // clip_length |
|
|
|
tensor_result = [] |
|
|
|
generator = torch.manual_seed(42) |
|
|
|
for t in range(times): |
|
|
|
if len(tensor_result) == 0: |
|
|
|
motion_zeros = source_image_pixels.repeat( |
|
config.data.n_motion_frames, 1, 1, 1) |
|
motion_zeros = motion_zeros.to( |
|
dtype=source_image_pixels.dtype, device=source_image_pixels.device) |
|
pixel_values_ref_img = torch.cat( |
|
[source_image_pixels, motion_zeros], dim=0) |
|
else: |
|
motion_frames = tensor_result[-1][0] |
|
motion_frames = motion_frames.permute(1, 0, 2, 3) |
|
motion_frames = motion_frames[0-config.data.n_motion_frames:] |
|
motion_frames = motion_frames * 2.0 - 1.0 |
|
motion_frames = motion_frames.to( |
|
dtype=source_image_pixels.dtype, device=source_image_pixels.device) |
|
pixel_values_ref_img = torch.cat( |
|
[source_image_pixels, motion_frames], dim=0) |
|
|
|
pixel_values_ref_img = pixel_values_ref_img.unsqueeze(0) |
|
|
|
audio_tensor = audio_emb[ |
|
t * clip_length: min((t + 1) * clip_length, audio_emb.shape[0]) |
|
] |
|
audio_tensor = audio_tensor.unsqueeze(0) |
|
audio_tensor = audio_tensor.to( |
|
device=net.audioproj.device, dtype=net.audioproj.dtype) |
|
audio_tensor = net.audioproj(audio_tensor) |
|
|
|
pipeline_output = pipeline( |
|
ref_image=pixel_values_ref_img, |
|
audio_tensor=audio_tensor, |
|
face_emb=source_image_face_emb, |
|
face_mask=source_image_face_region, |
|
pixel_values_full_mask=source_image_full_mask, |
|
pixel_values_face_mask=source_image_face_mask, |
|
pixel_values_lip_mask=source_image_lip_mask, |
|
width=img_size[0], |
|
height=img_size[1], |
|
video_length=clip_length, |
|
num_inference_steps=config.inference_steps, |
|
guidance_scale=config.cfg_scale, |
|
generator=generator, |
|
motion_scale=motion_scale, |
|
) |
|
|
|
tensor_result.append(pipeline_output.videos) |
|
|
|
tensor_result = torch.cat(tensor_result, dim=2) |
|
tensor_result = tensor_result.squeeze(0) |
|
|
|
output_file = config.output |
|
|
|
tensor_to_video(tensor_result, output_file, driving_audio_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"-c", "--config", default="configs/inference/default.yaml") |
|
parser.add_argument("--source_image", type=str, required=False, |
|
help="source image", default="test_data/source_images/6.jpg") |
|
parser.add_argument("--driving_audio", type=str, required=False, |
|
help="driving audio", default="test_data/driving_audios/singing/sing_4.wav") |
|
parser.add_argument( |
|
"--output", type=str, help="output video file name", default=".cache/output.mp4") |
|
parser.add_argument( |
|
"--pose_weight", type=float, help="weight of pose", default=1.0) |
|
parser.add_argument( |
|
"--face_weight", type=float, help="weight of face", default=1.0) |
|
parser.add_argument( |
|
"--lip_weight", type=float, help="weight of lip", default=1.0) |
|
parser.add_argument( |
|
"--face_expand_ratio", type=float, help="face region", default=1.2) |
|
parser.add_argument( |
|
"--checkpoint", type=str, help="which checkpoint", default=None) |
|
|
|
|
|
command_line_args = parser.parse_args() |
|
|
|
inference_process(command_line_args) |
|
|