Ohayou_Face / training /stylegan2_multi.py
Reevee's picture
first
f39e999
raw
history blame contribute delete
No virus
22.5 kB
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import numpy as np
import torch
from torch_utils import misc
from torch_utils import persistence
from torch_utils.ops import conv2d_resample
from torch_utils.ops import upfirdn2d
from torch_utils.ops import bias_act
from torch_utils.ops import fma
from .networks import FullyConnectedLayer, Conv2dLayer, ToRGBLayer, MappingNetwork
from util.utilgan import hw_scales, fix_size, multimask
@misc.profiled_function
def modulated_conv2d(
x, # Input tensor of shape [batch_size, in_channels, in_height, in_width].
weight, # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width].
styles, # Modulation coefficients of shape [batch_size, in_channels].
# !!! custom
# latmask, # mask for split-frame latents blending
countHW = [1,1], # frame split count by height,width
splitfine = 0., # frame split edge fineness (float from 0+)
size = None, # custom size
scale_type = None, # scaling way: fit, centr, side, pad, padside
noise = None, # Optional noise tensor to add to the output activations.
up = 1, # Integer upsampling factor.
down = 1, # Integer downsampling factor.
padding = 0, # Padding with respect to the upsampled image.
resample_filter = None, # Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter().
demodulate = True, # Apply weight demodulation?
flip_weight = True, # False = convolution, True = correlation (matches torch.nn.functional.conv2d).
fused_modconv = True, # Perform modulation, convolution, and demodulation as a single fused operation?
):
batch_size = x.shape[0]
out_channels, in_channels, kh, kw = weight.shape
misc.assert_shape(weight, [out_channels, in_channels, kh, kw]) # [OIkk]
misc.assert_shape(x, [batch_size, in_channels, None, None]) # [NIHW]
misc.assert_shape(styles, [batch_size, in_channels]) # [NI]
# Pre-normalize inputs to avoid FP16 overflow.
if x.dtype == torch.float16 and demodulate:
weight = weight * (1 / np.sqrt(in_channels * kh * kw) / weight.norm(float('inf'), dim=[1,2,3], keepdim=True)) # max_Ikk
styles = styles / styles.norm(float('inf'), dim=1, keepdim=True) # max_I
# Calculate per-sample weights and demodulation coefficients.
w = None
dcoefs = None
if demodulate or fused_modconv:
w = weight.unsqueeze(0) # [NOIkk]
w = w * styles.reshape(batch_size, 1, -1, 1, 1) # [NOIkk]
if demodulate:
dcoefs = (w.square().sum(dim=[2,3,4]) + 1e-8).rsqrt() # [NO]
if demodulate and fused_modconv:
w = w * dcoefs.reshape(batch_size, -1, 1, 1, 1) # [NOIkk]
# Execute by scaling the activations before and after the convolution.
if not fused_modconv:
x = x * styles.to(x.dtype).reshape(batch_size, -1, 1, 1)
x = conv2d_resample.conv2d_resample(x=x, w=weight.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, flip_weight=flip_weight)
# !!! custom size & multi latent blending
if size is not None and up==2:
x = fix_size(x, size, scale_type)
# x = multimask(x, size, latmask, countHW, splitfine)
if demodulate and noise is not None:
x = fma.fma(x, dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1), noise.to(x.dtype))
elif demodulate:
x = x * dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1)
elif noise is not None:
x = x.add_(noise.to(x.dtype))
return x
# Execute as one fused op using grouped convolution.
with misc.suppress_tracer_warnings(): # this value will be treated as a constant
batch_size = int(batch_size)
misc.assert_shape(x, [batch_size, in_channels, None, None])
x = x.reshape(1, -1, *x.shape[2:])
w = w.reshape(-1, in_channels, kh, kw)
x = conv2d_resample.conv2d_resample(x=x, w=w.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, groups=batch_size, flip_weight=flip_weight)
x = x.reshape(batch_size, -1, *x.shape[2:])
# !!! custom size & multi latent blending
if size is not None and up==2:
x = fix_size(x, size, scale_type)
# x = multimask(x, size, latmask, countHW, splitfine)
if noise is not None:
x = x.add_(noise)
return x
#----------------------------------------------------------------------------
@persistence.persistent_class
class SynthesisLayer(torch.nn.Module):
def __init__(self,
in_channels, # Number of input channels.
out_channels, # Number of output channels.
w_dim, # Intermediate latent (W) dimensionality.
resolution, # Resolution of this layer.
# !!! custom
countHW = [1,1], # frame split count by height,width
splitfine = 0., # frame split edge fineness (float from 0+)
size = None, # custom size
scale_type = None, # scaling way: fit, centr, side, pad, padside
init_res = [4,4], # Initial (minimal) resolution for progressive training
kernel_size = 3, # Convolution kernel size.
up = 1, # Integer upsampling factor.
use_noise = True, # Enable noise input?
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc.
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations.
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping.
channels_last = False, # Use channels_last format for the weights?
):
super().__init__()
self.resolution = resolution
self.countHW = countHW # !!! custom
self.splitfine = splitfine # !!! custom
self.size = size # !!! custom
self.scale_type = scale_type # !!! custom
self.init_res = init_res # !!! custom
self.up = up
self.use_noise = use_noise
self.activation = activation
self.conv_clamp = conv_clamp
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
self.padding = kernel_size // 2
self.act_gain = bias_act.activation_funcs[activation].def_gain
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
memory_format = torch.channels_last if channels_last else torch.contiguous_format
self.weight = torch.nn.Parameter(torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format))
if use_noise:
# !!! custom
self.register_buffer('noise_const', torch.randn([resolution * init_res[0]//4, resolution * init_res[1]//4]))
# self.register_buffer('noise_const', torch.randn([resolution, resolution]))
self.noise_strength = torch.nn.Parameter(torch.zeros([]))
self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
# !!! custom
# def forward(self, x, latmask, w, noise_mode='random', fused_modconv=True, gain=1):
def forward(self, x, w, noise_mode='random', fused_modconv=True, gain=1):
assert noise_mode in ['random', 'const', 'none']
in_resolution = self.resolution // self.up
# misc.assert_shape(x, [None, self.weight.shape[1], in_resolution, in_resolution])
styles = self.affine(w)
noise = None
if self.use_noise and noise_mode == 'random':
# !!! custom
sz = self.size if self.up==2 and self.size is not None else x.shape[2:]
noise = torch.randn([x.shape[0], 1, *sz], device=x.device) * self.noise_strength
# noise = torch.randn([x.shape[0], 1, self.resolution, self.resolution], device=x.device) * self.noise_strength
if self.use_noise and noise_mode == 'const':
noise = self.noise_const * self.noise_strength
# !!! custom noise size
noise_size = self.size if self.up==2 and self.size is not None and self.resolution > 4 else x.shape[2:]
noise = fix_size(noise.unsqueeze(0).unsqueeze(0), noise_size, scale_type=self.scale_type)[0][0]
# print(x.shape, noise.shape, self.size, self.up)
flip_weight = (self.up == 1) # slightly faster
# x = modulated_conv2d(x=x, weight=self.weight, styles=styles, noise=noise, up=self.up,
# latmask=latmask, countHW=self.countHW, splitfine=self.splitfine, size=self.size, scale_type=self.scale_type, # !!! custom
# padding=self.padding, resample_filter=self.resample_filter, flip_weight=flip_weight, fused_modconv=fused_modconv)
x = modulated_conv2d(x=x, weight=self.weight, styles=styles, noise=noise, up=self.up,
countHW=self.countHW, splitfine=self.splitfine, size=self.size, scale_type=self.scale_type, # !!! custom
padding=self.padding, resample_filter=self.resample_filter, flip_weight=flip_weight, fused_modconv=fused_modconv)
act_gain = self.act_gain * gain
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
x = bias_act.bias_act(x, self.bias.to(x.dtype), act=self.activation, gain=act_gain, clamp=act_clamp)
return x
#----------------------------------------------------------------------------
@persistence.persistent_class
class SynthesisBlock(torch.nn.Module):
def __init__(self,
in_channels, # Number of input channels, 0 = first block.
out_channels, # Number of output channels.
w_dim, # Intermediate latent (W) dimensionality.
resolution, # Resolution of this block.
img_channels, # Number of output color channels.
is_last, # Is this the last block?
# !!! custom
size = None, # custom size
scale_type = None, # scaling way: fit, centr, side, pad, padside
init_res = [4,4], # Initial (minimal) resolution for progressive training
architecture = 'skip', # Architecture: 'orig', 'skip', 'resnet'.
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations.
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping.
use_fp16 = False, # Use FP16 for this block?
fp16_channels_last = False, # Use channels-last memory format with FP16?
**layer_kwargs, # Arguments for SynthesisLayer.
):
assert architecture in ['orig', 'skip', 'resnet']
super().__init__()
self.in_channels = in_channels
self.w_dim = w_dim
self.resolution = resolution
self.size = size # !!! custom
self.scale_type = scale_type # !!! custom
self.init_res = init_res # !!! custom
self.img_channels = img_channels
self.is_last = is_last
self.architecture = architecture
self.use_fp16 = use_fp16
self.channels_last = (use_fp16 and fp16_channels_last)
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
self.num_conv = 0
self.num_torgb = 0
if in_channels == 0:
# !!! custom
self.const = torch.nn.Parameter(torch.randn([out_channels, *init_res]))
# self.const = torch.nn.Parameter(torch.randn([out_channels, resolution, resolution]))
if in_channels != 0:
self.conv0 = SynthesisLayer(in_channels, out_channels, w_dim=w_dim, resolution=resolution, up=2,
init_res=init_res, scale_type=scale_type, size=size, # !!! custom
resample_filter=resample_filter, conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs)
self.num_conv += 1
self.conv1 = SynthesisLayer(out_channels, out_channels, w_dim=w_dim, resolution=resolution,
init_res=init_res, scale_type=scale_type, size=size, # !!! custom
conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs)
self.num_conv += 1
if is_last or architecture == 'skip':
self.torgb = ToRGBLayer(out_channels, img_channels, w_dim=w_dim,
conv_clamp=conv_clamp, channels_last=self.channels_last)
self.num_torgb += 1
if in_channels != 0 and architecture == 'resnet':
self.skip = Conv2dLayer(in_channels, out_channels, kernel_size=1, bias=False, up=2,
resample_filter=resample_filter, channels_last=self.channels_last)
# !!! custom
# def forward(self, x, img, ws, latmask, dconst, force_fp32=False, fused_modconv=None, **layer_kwargs):
def forward(self, x, img, ws, force_fp32=False, fused_modconv=None, **layer_kwargs):
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim])
w_iter = iter(ws.unbind(dim=1))
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format
if fused_modconv is None:
with misc.suppress_tracer_warnings(): # this value will be treated as a constant
fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1)
# Input.
if self.in_channels == 0:
x = self.const.to(dtype=dtype, memory_format=memory_format)
x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1])
# !!! custom const size
if 'side' in self.scale_type and 'symm' in self.scale_type: # looks better
const_size = self.init_res if self.size is None else self.size
x = fix_size(x, const_size, self.scale_type)
# distortion technique from Aydao
# x += dconst
else:
# misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2])
x = x.to(dtype=dtype, memory_format=memory_format)
# Main layers.
if self.in_channels == 0:
# !!! custom latmask
# x = self.conv1(x, None, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
elif self.architecture == 'resnet':
y = self.skip(x, gain=np.sqrt(0.5))
# !!! custom latmask
# x = self.conv0(x, latmask, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
# x = self.conv1(x, None, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs)
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs)
x = y.add_(x)
else:
# !!! custom latmask
# x = self.conv0(x, latmask, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
# x = self.conv1(x, None, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
# ToRGB.
if img is not None:
# !!! custom img size
# misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2])
img = upfirdn2d.upsample2d(img, self.resample_filter)
img = fix_size(img, self.size, scale_type=self.scale_type)
if self.is_last or self.architecture == 'skip':
y = self.torgb(x, next(w_iter), fused_modconv=fused_modconv)
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format)
img = img.add_(y) if img is not None else y
assert x.dtype == dtype
assert img is None or img.dtype == torch.float32
return x, img
#----------------------------------------------------------------------------
@persistence.persistent_class
class SynthesisNetwork(torch.nn.Module):
def __init__(self,
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # Output image resolution.
img_channels, # Number of color channels.
# !!! custom
init_res = [4,4], # Initial (minimal) resolution for progressive training
size = None, # Output size
scale_type = None, # scaling way: fit, centr, side, pad, padside
channel_base = 32768, # Overall multiplier for the number of channels.
channel_max = 512, # Maximum number of channels in any layer.
num_fp16_res = 0, # Use FP16 for the N highest resolutions.
verbose = False, #
**block_kwargs, # Arguments for SynthesisBlock.
):
assert img_resolution >= 4 and img_resolution & (img_resolution - 1) == 0
super().__init__()
self.w_dim = w_dim
self.img_resolution = img_resolution
self.res_log2 = int(np.log2(img_resolution))
self.img_channels = img_channels
self.fmap_base = channel_base
self.block_resolutions = [2 ** i for i in range(2, self.res_log2 + 1)]
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions}
fp16_resolution = max(2 ** (self.res_log2 + 1 - num_fp16_res), 8)
# calculate intermediate layers sizes for arbitrary output resolution
custom_res = (img_resolution * init_res[0] // 4, img_resolution * init_res[1] // 4)
if size is None: size = custom_res
if init_res != [4,4] and verbose:
print(' .. init res', init_res, size)
keep_first_layers = 2 if scale_type == 'fit' else None
hws = hw_scales(size, custom_res, self.res_log2 - 2, keep_first_layers, verbose)
if verbose: print(hws, '..', custom_res, self.res_log2-1)
self.num_ws = 0
for i, res in enumerate(self.block_resolutions):
in_channels = channels_dict[res // 2] if res > 4 else 0
out_channels = channels_dict[res]
use_fp16 = (res >= fp16_resolution)
is_last = (res == self.img_resolution)
block = SynthesisBlock(in_channels, out_channels, w_dim=w_dim, resolution=res,
init_res=init_res, scale_type=scale_type, size=hws[i], # !!! custom
img_channels=img_channels, is_last=is_last, use_fp16=use_fp16, **block_kwargs)
self.num_ws += block.num_conv
if is_last:
self.num_ws += block.num_torgb
setattr(self, f'b{res}', block)
# def forward(self, ws, latmask, dconst, **block_kwargs):
def forward(self, ws, **block_kwargs):
block_ws = []
with torch.autograd.profiler.record_function('split_ws'):
misc.assert_shape(ws, [None, self.num_ws, self.w_dim])
ws = ws.to(torch.float32)
w_idx = 0
for res in self.block_resolutions:
block = getattr(self, f'b{res}')
block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb))
w_idx += block.num_conv
x = img = None
for res, cur_ws in zip(self.block_resolutions, block_ws):
block = getattr(self, f'b{res}')
# !!! custom
# x, img = block(x, img, cur_ws, latmask, dconst, **block_kwargs)
x, img = block(x, img, cur_ws, **block_kwargs)
return img
#----------------------------------------------------------------------------
@persistence.persistent_class
class Generator(torch.nn.Module):
def __init__(self,
z_dim, # Input latent (Z) dimensionality.
c_dim, # Conditioning label (C) dimensionality.
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # Output resolution.
img_channels, # Number of output color channels.
# !!! custom
init_res = [4,4], # Initial (minimal) resolution for progressive training
mapping_kwargs = {}, # Arguments for MappingNetwork.
synthesis_kwargs = {}, # Arguments for SynthesisNetwork.
):
super().__init__()
self.z_dim = z_dim
self.c_dim = c_dim
self.w_dim = w_dim
self.img_resolution = img_resolution
self.init_res = init_res # !!! custom
self.img_channels = img_channels
# !!! custom
self.synthesis = SynthesisNetwork(w_dim=w_dim, img_resolution=img_resolution, init_res=init_res, img_channels=img_channels, **synthesis_kwargs) # !!! custom
self.num_ws = self.synthesis.num_ws
self.mapping = MappingNetwork(z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs)
# !!! custom
self.output_shape = [1, img_channels, img_resolution * init_res[0] // 4, img_resolution * init_res[1] // 4]
# !!! custom
# def forward(self, z, c, latmask, dconst, truncation_psi=1, truncation_cutoff=None, **synthesis_kwargs):
def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, **synthesis_kwargs):
# def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, **synthesis_kwargs):
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff)
# img = self.synthesis(ws, latmask, dconst, **synthesis_kwargs) # !!! custom
img = self.synthesis(ws, **synthesis_kwargs) # !!! custom
return img