Reaper200's picture
Create app.py
788ab88 verified
raw
history blame
2.65 kB
import streamlit as st
from transformers import pipeline
from PIL import Image
from gtts import gTTS
import os
# Mock object detection function
def detect_objects(image):
st.write("Detecting objects in the image...")
# Simulated output
return ["table", "chair", "lamp"]
# Mock context-aware filter function
def filter_relevant_objects(detected_objects, setting):
st.write(f"Filtering relevant objects for setting: {setting}")
# Simulated filtering based on setting
if setting == "indoor":
return [obj for obj in detected_objects if obj in ["table", "lamp"]]
return detected_objects
# Mock summarization function
def generate_summary(relevant_objects):
st.write("Generating summary for relevant objects...")
# Simulated summary
summary = f"This is an {len(relevant_objects)}-item scene including: {', '.join(relevant_objects)}."
return summary
# Mock text-to-speech function
def text_to_speech(text):
st.write("Converting summary to speech...")
tts = gTTS(text)
tts.save("summary.mp3")
st.audio("summary.mp3")
# Mock GPS navigation function
def get_distance_to_object(address):
st.write(f"Calculating distance to address: {address}")
# Simulated output
return "5 km", "15 mins"
# Streamlit app main function
def main():
st.title("Context-Aware Object Detection with Hugging Face")
# Step 1: Capture Image from Camera
captured_image = st.camera_input("Take a picture")
if captured_image is not None:
# Open the captured image
image = Image.open(captured_image)
st.image(image, caption="Captured Image", use_column_width=True)
# Step 2: Detect Objects
detected_objects = detect_objects(image)
st.write(f"Detected Objects: {detected_objects}")
# Step 3: Filter Relevant Objects
setting = st.selectbox("Select Setting", ["indoor", "outdoor"], index=0)
relevant_objects = filter_relevant_objects(detected_objects, setting)
st.write(f"Relevant Objects: {relevant_objects}")
# Step 4: Generate Summary
summary = generate_summary(relevant_objects)
st.write(f"Summary: {summary}")
# Step 5: Convert Summary to Speech
text_to_speech(summary)
# Step 6: GPS Navigation (simulated)
address = st.text_input("Enter Object's Address", "1600 Amphitheatre Parkway, Mountain View, CA")
if st.button("Get Distance to Object"):
distance, duration = get_distance_to_object(address)
st.write(f"Distance to Object: {distance}, Duration: {duration}")
if __name__ == "__main__":
main()