Reaper200 commited on
Commit
788ab88
·
verified ·
1 Parent(s): add2d43

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -0
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+ from PIL import Image
4
+ from gtts import gTTS
5
+ import os
6
+
7
+ # Mock object detection function
8
+ def detect_objects(image):
9
+ st.write("Detecting objects in the image...")
10
+ # Simulated output
11
+ return ["table", "chair", "lamp"]
12
+
13
+ # Mock context-aware filter function
14
+ def filter_relevant_objects(detected_objects, setting):
15
+ st.write(f"Filtering relevant objects for setting: {setting}")
16
+ # Simulated filtering based on setting
17
+ if setting == "indoor":
18
+ return [obj for obj in detected_objects if obj in ["table", "lamp"]]
19
+ return detected_objects
20
+
21
+ # Mock summarization function
22
+ def generate_summary(relevant_objects):
23
+ st.write("Generating summary for relevant objects...")
24
+ # Simulated summary
25
+ summary = f"This is an {len(relevant_objects)}-item scene including: {', '.join(relevant_objects)}."
26
+ return summary
27
+
28
+ # Mock text-to-speech function
29
+ def text_to_speech(text):
30
+ st.write("Converting summary to speech...")
31
+ tts = gTTS(text)
32
+ tts.save("summary.mp3")
33
+ st.audio("summary.mp3")
34
+
35
+ # Mock GPS navigation function
36
+ def get_distance_to_object(address):
37
+ st.write(f"Calculating distance to address: {address}")
38
+ # Simulated output
39
+ return "5 km", "15 mins"
40
+
41
+ # Streamlit app main function
42
+ def main():
43
+ st.title("Context-Aware Object Detection with Hugging Face")
44
+
45
+ # Step 1: Capture Image from Camera
46
+ captured_image = st.camera_input("Take a picture")
47
+
48
+ if captured_image is not None:
49
+ # Open the captured image
50
+ image = Image.open(captured_image)
51
+ st.image(image, caption="Captured Image", use_column_width=True)
52
+
53
+ # Step 2: Detect Objects
54
+ detected_objects = detect_objects(image)
55
+ st.write(f"Detected Objects: {detected_objects}")
56
+
57
+ # Step 3: Filter Relevant Objects
58
+ setting = st.selectbox("Select Setting", ["indoor", "outdoor"], index=0)
59
+ relevant_objects = filter_relevant_objects(detected_objects, setting)
60
+ st.write(f"Relevant Objects: {relevant_objects}")
61
+
62
+ # Step 4: Generate Summary
63
+ summary = generate_summary(relevant_objects)
64
+ st.write(f"Summary: {summary}")
65
+
66
+ # Step 5: Convert Summary to Speech
67
+ text_to_speech(summary)
68
+
69
+ # Step 6: GPS Navigation (simulated)
70
+ address = st.text_input("Enter Object's Address", "1600 Amphitheatre Parkway, Mountain View, CA")
71
+ if st.button("Get Distance to Object"):
72
+ distance, duration = get_distance_to_object(address)
73
+ st.write(f"Distance to Object: {distance}, Duration: {duration}")
74
+
75
+ if __name__ == "__main__":
76
+ main()