Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
+
from gtts import gTTS
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Mock object detection function
|
8 |
+
def detect_objects(image):
|
9 |
+
st.write("Detecting objects in the image...")
|
10 |
+
# Simulated output
|
11 |
+
return ["table", "chair", "lamp"]
|
12 |
+
|
13 |
+
# Mock context-aware filter function
|
14 |
+
def filter_relevant_objects(detected_objects, setting):
|
15 |
+
st.write(f"Filtering relevant objects for setting: {setting}")
|
16 |
+
# Simulated filtering based on setting
|
17 |
+
if setting == "indoor":
|
18 |
+
return [obj for obj in detected_objects if obj in ["table", "lamp"]]
|
19 |
+
return detected_objects
|
20 |
+
|
21 |
+
# Mock summarization function
|
22 |
+
def generate_summary(relevant_objects):
|
23 |
+
st.write("Generating summary for relevant objects...")
|
24 |
+
# Simulated summary
|
25 |
+
summary = f"This is an {len(relevant_objects)}-item scene including: {', '.join(relevant_objects)}."
|
26 |
+
return summary
|
27 |
+
|
28 |
+
# Mock text-to-speech function
|
29 |
+
def text_to_speech(text):
|
30 |
+
st.write("Converting summary to speech...")
|
31 |
+
tts = gTTS(text)
|
32 |
+
tts.save("summary.mp3")
|
33 |
+
st.audio("summary.mp3")
|
34 |
+
|
35 |
+
# Mock GPS navigation function
|
36 |
+
def get_distance_to_object(address):
|
37 |
+
st.write(f"Calculating distance to address: {address}")
|
38 |
+
# Simulated output
|
39 |
+
return "5 km", "15 mins"
|
40 |
+
|
41 |
+
# Streamlit app main function
|
42 |
+
def main():
|
43 |
+
st.title("Context-Aware Object Detection with Hugging Face")
|
44 |
+
|
45 |
+
# Step 1: Capture Image from Camera
|
46 |
+
captured_image = st.camera_input("Take a picture")
|
47 |
+
|
48 |
+
if captured_image is not None:
|
49 |
+
# Open the captured image
|
50 |
+
image = Image.open(captured_image)
|
51 |
+
st.image(image, caption="Captured Image", use_column_width=True)
|
52 |
+
|
53 |
+
# Step 2: Detect Objects
|
54 |
+
detected_objects = detect_objects(image)
|
55 |
+
st.write(f"Detected Objects: {detected_objects}")
|
56 |
+
|
57 |
+
# Step 3: Filter Relevant Objects
|
58 |
+
setting = st.selectbox("Select Setting", ["indoor", "outdoor"], index=0)
|
59 |
+
relevant_objects = filter_relevant_objects(detected_objects, setting)
|
60 |
+
st.write(f"Relevant Objects: {relevant_objects}")
|
61 |
+
|
62 |
+
# Step 4: Generate Summary
|
63 |
+
summary = generate_summary(relevant_objects)
|
64 |
+
st.write(f"Summary: {summary}")
|
65 |
+
|
66 |
+
# Step 5: Convert Summary to Speech
|
67 |
+
text_to_speech(summary)
|
68 |
+
|
69 |
+
# Step 6: GPS Navigation (simulated)
|
70 |
+
address = st.text_input("Enter Object's Address", "1600 Amphitheatre Parkway, Mountain View, CA")
|
71 |
+
if st.button("Get Distance to Object"):
|
72 |
+
distance, duration = get_distance_to_object(address)
|
73 |
+
st.write(f"Distance to Object: {distance}, Duration: {duration}")
|
74 |
+
|
75 |
+
if __name__ == "__main__":
|
76 |
+
main()
|