Spaces:
Running
Running
# RoMa: Revisiting Robust Losses for Dense Feature Matching | |
### [Project Page (TODO)](https://parskatt.github.io/RoMa) | [Paper](https://arxiv.org/abs/2305.15404) | |
<br/> | |
> RoMa: Revisiting Robust Lossses for Dense Feature Matching | |
> [Johan Edstedt](https://scholar.google.com/citations?user=Ul-vMR0AAAAJ), [Qiyu Sun](https://scholar.google.com/citations?user=HS2WuHkAAAAJ), [Georg Bökman](https://scholar.google.com/citations?user=FUE3Wd0AAAAJ), [Mårten Wadenbäck](https://scholar.google.com/citations?user=6WRQpCQAAAAJ), [Michael Felsberg](https://scholar.google.com/citations?&user=lkWfR08AAAAJ) | |
> Arxiv 2023 | |
**NOTE!!! Very early code, there might be bugs** | |
The codebase is in the [roma folder](roma). | |
## Setup/Install | |
In your python environment (tested on Linux python 3.10), run: | |
```bash | |
pip install -e . | |
``` | |
## Demo / How to Use | |
We provide two demos in the [demos folder](demo). | |
Here's the gist of it: | |
```python | |
from roma import roma_outdoor | |
roma_model = roma_outdoor(device=device) | |
# Match | |
warp, certainty = roma_model.match(imA_path, imB_path, device=device) | |
# Sample matches for estimation | |
matches, certainty = roma_model.sample(warp, certainty) | |
# Convert to pixel coordinates (RoMa produces matches in [-1,1]x[-1,1]) | |
kptsA, kptsB = roma_model.to_pixel_coordinates(matches, H_A, W_A, H_B, W_B) | |
# Find a fundamental matrix (or anything else of interest) | |
F, mask = cv2.findFundamentalMat( | |
kptsA.cpu().numpy(), kptsB.cpu().numpy(), ransacReprojThreshold=0.2, method=cv2.USAC_MAGSAC, confidence=0.999999, maxIters=10000 | |
) | |
``` | |
## Reproducing Results | |
The experiments in the paper are provided in the [experiments folder](experiments). | |
### Training | |
1. First follow the instructions provided here: https://github.com/Parskatt/DKM for downloading and preprocessing datasets. | |
2. Run the relevant experiment, e.g., | |
```bash | |
torchrun --nproc_per_node=4 --nnodes=1 --rdzv_backend=c10d experiments/roma_outdoor.py | |
``` | |
### Testing | |
```bash | |
python experiments/roma_outdoor.py --only_test --benchmark mega-1500 | |
``` | |
## License | |
Due to our dependency on [DINOv2](https://github.com/facebookresearch/dinov2/blob/main/LICENSE), the license is sadly non-commercial only for the moment. | |
## Acknowledgement | |
Our codebase builds on the code in [DKM](https://github.com/Parskatt/DKM). | |
## BibTeX | |
If you find our models useful, please consider citing our paper! | |
``` | |
@article{edstedt2023roma, | |
title={{RoMa}: Revisiting Robust Lossses for Dense Feature Matching}, | |
author={Edstedt, Johan and Sun, Qiyu and Bökman, Georg and Wadenbäck, Mårten and Felsberg, Michael}, | |
journal={arXiv preprint arXiv:2305.15404}, | |
year={2023} | |
} | |
``` | |