Spaces:
Running
Running
# | |
<p align="center"> | |
<h1 align="center"> <ins>RoMa</ins> 🏛️:<br> Robust Dense Feature Matching <br> ⭐CVPR 2024⭐</h1> | |
<p align="center"> | |
<a href="https://scholar.google.com/citations?user=Ul-vMR0AAAAJ">Johan Edstedt</a> | |
· | |
<a href="https://scholar.google.com/citations?user=HS2WuHkAAAAJ">Qiyu Sun</a> | |
· | |
<a href="https://scholar.google.com/citations?user=FUE3Wd0AAAAJ">Georg Bökman</a> | |
· | |
<a href="https://scholar.google.com/citations?user=6WRQpCQAAAAJ">Mårten Wadenbäck</a> | |
· | |
<a href="https://scholar.google.com/citations?user=lkWfR08AAAAJ">Michael Felsberg</a> | |
</p> | |
<h2 align="center"><p> | |
<a href="https://arxiv.org/abs/2305.15404" align="center">Paper</a> | | |
<a href="https://parskatt.github.io/RoMa" align="center">Project Page</a> | |
</p></h2> | |
<div align="center"></div> | |
</p> | |
<br/> | |
<p align="center"> | |
<img src="https://github.com/Parskatt/RoMa/assets/22053118/15d8fea7-aa6d-479f-8a93-350d950d006b" alt="example" width=80%> | |
<br> | |
<em>RoMa is the robust dense feature matcher capable of estimating pixel-dense warps and reliable certainties for almost any image pair.</em> | |
</p> | |
## Setup/Install | |
In your python environment (tested on Linux python 3.10), run: | |
```bash | |
pip install -e . | |
``` | |
## Demo / How to Use | |
We provide two demos in the [demos folder](demo). | |
Here's the gist of it: | |
```python | |
from romatch import roma_outdoor | |
roma_model = roma_outdoor(device=device) | |
# Match | |
warp, certainty = roma_model.match(imA_path, imB_path, device=device) | |
# Sample matches for estimation | |
matches, certainty = roma_model.sample(warp, certainty) | |
# Convert to pixel coordinates (RoMa produces matches in [-1,1]x[-1,1]) | |
kptsA, kptsB = roma_model.to_pixel_coordinates(matches, H_A, W_A, H_B, W_B) | |
# Find a fundamental matrix (or anything else of interest) | |
F, mask = cv2.findFundamentalMat( | |
kptsA.cpu().numpy(), kptsB.cpu().numpy(), ransacReprojThreshold=0.2, method=cv2.USAC_MAGSAC, confidence=0.999999, maxIters=10000 | |
) | |
``` | |
**New**: You can also match arbitrary keypoints with RoMa. See [match_keypoints](romatch/models/matcher.py) in RegressionMatcher. | |
## Settings | |
### Resolution | |
By default RoMa uses an initial resolution of (560,560) which is then upsampled to (864,864). | |
You can change this at construction (see roma_outdoor kwargs). | |
You can also change this later, by changing the roma_model.w_resized, roma_model.h_resized, and roma_model.upsample_res. | |
### Sampling | |
roma_model.sample_thresh controls the thresholding used when sampling matches for estimation. In certain cases a lower or higher threshold may improve results. | |
## Reproducing Results | |
The experiments in the paper are provided in the [experiments folder](experiments). | |
### Training | |
1. First follow the instructions provided here: https://github.com/Parskatt/DKM for downloading and preprocessing datasets. | |
2. Run the relevant experiment, e.g., | |
```bash | |
torchrun --nproc_per_node=4 --nnodes=1 --rdzv_backend=c10d experiments/roma_outdoor.py | |
``` | |
### Testing | |
```bash | |
python experiments/roma_outdoor.py --only_test --benchmark mega-1500 | |
``` | |
## License | |
All our code except DINOv2 is MIT license. | |
DINOv2 has an Apache 2 license [DINOv2](https://github.com/facebookresearch/dinov2/blob/main/LICENSE). | |
## Acknowledgement | |
Our codebase builds on the code in [DKM](https://github.com/Parskatt/DKM). | |
## Tiny RoMa | |
If you find that RoMa is too heavy, you might want to try Tiny RoMa which is built on top of XFeat. | |
```python | |
from romatch import tiny_roma_v1_outdoor | |
tiny_roma_model = tiny_roma_v1_outdoor(device=device) | |
``` | |
Mega1500: | |
| | AUC@5 | AUC@10 | AUC@20 | | |
|----------|----------|----------|----------| | |
| XFeat | 46.4 | 58.9 | 69.2 | | |
| XFeat* | 51.9 | 67.2 | 78.9 | | |
| Tiny RoMa v1 | 56.4 | 69.5 | 79.5 | | |
| RoMa | - | - | - | | |
Mega-8-Scenes (See DKM): | |
| | AUC@5 | AUC@10 | AUC@20 | | |
|----------|----------|----------|----------| | |
| XFeat | - | - | - | | |
| XFeat* | 50.1 | 64.4 | 75.2 | | |
| Tiny RoMa v1 | 57.7 | 70.5 | 79.6 | | |
| RoMa | - | - | - | | |
IMC22 :'): | |
| | mAA@10 | | |
|----------|----------| | |
| XFeat | 42.1 | | |
| XFeat* | - | | |
| Tiny RoMa v1 | 42.2 | | |
| RoMa | - | | |
## BibTeX | |
If you find our models useful, please consider citing our paper! | |
``` | |
@article{edstedt2024roma, | |
title={{RoMa: Robust Dense Feature Matching}}, | |
author={Edstedt, Johan and Sun, Qiyu and Bökman, Georg and Wadenbäck, Mårten and Felsberg, Michael}, | |
journal={IEEE Conference on Computer Vision and Pattern Recognition}, | |
year={2024} | |
} | |
``` | |