Spaces:
Running
Running
from pathlib import Path | |
import argparse | |
from . import colmap_from_nvm | |
from ... import extract_features, match_features, triangulation | |
from ... import pairs_from_covisibility, pairs_from_retrieval, localize_sfm | |
CONDITIONS = [ | |
"dawn", | |
"dusk", | |
"night", | |
"night-rain", | |
"overcast-summer", | |
"overcast-winter", | |
"rain", | |
"snow", | |
"sun", | |
] | |
def generate_query_list(dataset, image_dir, path): | |
h, w = 1024, 1024 | |
intrinsics_filename = "intrinsics/{}_intrinsics.txt" | |
cameras = {} | |
for side in ["left", "right", "rear"]: | |
with open(dataset / intrinsics_filename.format(side), "r") as f: | |
fx = f.readline().split()[1] | |
fy = f.readline().split()[1] | |
cx = f.readline().split()[1] | |
cy = f.readline().split()[1] | |
assert fx == fy | |
params = ["SIMPLE_RADIAL", w, h, fx, cx, cy, 0.0] | |
cameras[side] = [str(p) for p in params] | |
queries = sorted(image_dir.glob("**/*.jpg")) | |
queries = [str(q.relative_to(image_dir.parents[0])) for q in queries] | |
out = [[q] + cameras[Path(q).parent.name] for q in queries] | |
with open(path, "w") as f: | |
f.write("\n".join(map(" ".join, out))) | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--dataset", | |
type=Path, | |
default="datasets/robotcar", | |
help="Path to the dataset, default: %(default)s", | |
) | |
parser.add_argument( | |
"--outputs", | |
type=Path, | |
default="outputs/robotcar", | |
help="Path to the output directory, default: %(default)s", | |
) | |
parser.add_argument( | |
"--num_covis", | |
type=int, | |
default=20, | |
help="Number of image pairs for SfM, default: %(default)s", | |
) | |
parser.add_argument( | |
"--num_loc", | |
type=int, | |
default=20, | |
help="Number of image pairs for loc, default: %(default)s", | |
) | |
args = parser.parse_args() | |
# Setup the paths | |
dataset = args.dataset | |
images = dataset / "images/" | |
outputs = args.outputs # where everything will be saved | |
outputs.mkdir(exist_ok=True, parents=True) | |
query_list = outputs / "{condition}_queries_with_intrinsics.txt" | |
sift_sfm = outputs / "sfm_sift" | |
reference_sfm = outputs / "sfm_superpoint+superglue" | |
sfm_pairs = outputs / f"pairs-db-covis{args.num_covis}.txt" | |
loc_pairs = outputs / f"pairs-query-netvlad{args.num_loc}.txt" | |
results = outputs / f"RobotCar_hloc_superpoint+superglue_netvlad{args.num_loc}.txt" | |
# pick one of the configurations for extraction and matching | |
retrieval_conf = extract_features.confs["netvlad"] | |
feature_conf = extract_features.confs["superpoint_aachen"] | |
matcher_conf = match_features.confs["superglue"] | |
for condition in CONDITIONS: | |
generate_query_list( | |
dataset, images / condition, str(query_list).format(condition=condition) | |
) | |
features = extract_features.main(feature_conf, images, outputs, as_half=True) | |
colmap_from_nvm.main( | |
dataset / "3D-models/all-merged/all.nvm", | |
dataset / "3D-models/overcast-reference.db", | |
sift_sfm, | |
) | |
pairs_from_covisibility.main(sift_sfm, sfm_pairs, num_matched=args.num_covis) | |
sfm_matches = match_features.main( | |
matcher_conf, sfm_pairs, feature_conf["output"], outputs | |
) | |
triangulation.main(reference_sfm, sift_sfm, images, sfm_pairs, features, sfm_matches) | |
global_descriptors = extract_features.main(retrieval_conf, images, outputs) | |
# TODO: do per location and per camera | |
pairs_from_retrieval.main( | |
global_descriptors, | |
loc_pairs, | |
args.num_loc, | |
query_prefix=CONDITIONS, | |
db_model=reference_sfm, | |
) | |
loc_matches = match_features.main( | |
matcher_conf, loc_pairs, feature_conf["output"], outputs | |
) | |
localize_sfm.main( | |
reference_sfm, | |
Path(str(query_list).format(condition="*")), | |
loc_pairs, | |
features, | |
loc_matches, | |
results, | |
covisibility_clustering=False, | |
prepend_camera_name=True, | |
) | |