|
import os |
|
is_spaces = True if os.environ.get('SPACE_ID') else False |
|
|
|
if(is_spaces): |
|
import spaces |
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" |
|
import sys |
|
|
|
from dotenv import load_dotenv |
|
load_dotenv() |
|
|
|
|
|
sys.path.insert(0, os.getcwd()) |
|
|
|
import gradio as gr |
|
from PIL import Image |
|
import torch |
|
import uuid |
|
import os |
|
import shutil |
|
import json |
|
import yaml |
|
from slugify import slugify |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
if(not is_spaces): |
|
from toolkit.job import get_job |
|
|
|
MAX_IMAGES = 150 |
|
|
|
def load_captioning(uploaded_images, concept_sentence): |
|
updates = [] |
|
if len(uploaded_images) <= 1: |
|
raise gr.Error( |
|
"Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)" |
|
) |
|
elif len(uploaded_images) > MAX_IMAGES: |
|
raise gr.Error( |
|
f"For now, only {MAX_IMAGES} or less images are allowed for training" |
|
) |
|
|
|
|
|
updates.append(gr.update(visible=True)) |
|
|
|
for i in range(1, MAX_IMAGES + 1): |
|
|
|
visible = i <= len(uploaded_images) |
|
|
|
|
|
updates.append(gr.update(visible=visible)) |
|
|
|
|
|
image_value = uploaded_images[i - 1] if visible else None |
|
|
|
updates.append(gr.update(value=image_value, visible=visible)) |
|
|
|
|
|
text_value = "[trigger]" if visible and concept_sentence else None |
|
updates.append(gr.update(value=text_value, visible=visible)) |
|
|
|
|
|
updates.append(gr.update(visible=True)) |
|
updates.append(gr.update(placeholder=f'A photo of {concept_sentence} holding a sign that reads "Hello friend"')) |
|
updates.append(gr.update(placeholder=f'A mountainous landscape in the style of {concept_sentence}')) |
|
updates.append(gr.update(placeholder=f'A {concept_sentence} in a mall')) |
|
return updates |
|
|
|
if(is_spaces): |
|
load_captioning = spaces.GPU()(load_captioning) |
|
|
|
def create_dataset(*inputs): |
|
print("Creating dataset") |
|
images = inputs[0] |
|
destination_folder = str(f"datasets/{uuid.uuid4()}") |
|
if not os.path.exists(destination_folder): |
|
os.makedirs(destination_folder) |
|
|
|
jsonl_file_path = os.path.join(destination_folder, 'metadata.jsonl') |
|
with open(jsonl_file_path, 'a') as jsonl_file: |
|
for index, image in enumerate(images): |
|
new_image_path = shutil.copy(image, destination_folder) |
|
|
|
original_caption = inputs[index + 1] |
|
file_name = os.path.basename(new_image_path) |
|
|
|
data = {"file_name": file_name, "prompt": original_caption} |
|
|
|
jsonl_file.write(json.dumps(data) + "\n") |
|
|
|
return destination_folder |
|
|
|
def run_captioning(images, concept_sentence, *captions): |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 |
|
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True).to(device) |
|
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True) |
|
|
|
captions = list(captions) |
|
for i, image_path in enumerate(images): |
|
print(captions[i]) |
|
if isinstance(image_path, str): |
|
image = Image.open(image_path).convert('RGB') |
|
|
|
prompt = "<DETAILED_CAPTION>" |
|
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype) |
|
|
|
generated_ids = model.generate( |
|
input_ids=inputs["input_ids"], |
|
pixel_values=inputs["pixel_values"], |
|
max_new_tokens=1024, |
|
num_beams=3 |
|
) |
|
|
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] |
|
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height)) |
|
caption_text = parsed_answer['<DETAILED_CAPTION>'].replace("The image shows ", "") |
|
if(concept_sentence): |
|
caption_text = f"{caption_text} [trigger]" |
|
captions[i] = caption_text |
|
|
|
|
|
yield captions |
|
model.to("cpu") |
|
del model |
|
del processor |
|
|
|
def start_training( |
|
lora_name, |
|
concept_sentence, |
|
steps, |
|
lr, |
|
rank, |
|
dataset_folder, |
|
sample_1, |
|
sample_2, |
|
sample_3, |
|
): |
|
if not lora_name: |
|
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.") |
|
print("Started training") |
|
slugged_lora_name = slugify(lora_name) |
|
|
|
|
|
with open("train_lora_flux_24gb.yaml", "r") as f: |
|
config = yaml.safe_load(f) |
|
|
|
|
|
config['config']['name'] = slugged_lora_name |
|
config['config']['process'][0]['model']['low_vram'] = True |
|
config['config']['process'][0]['train']['skip_first_sample'] = True |
|
config['config']['process'][0]['train']['steps'] = int(steps) |
|
config['config']['process'][0]['train']['lr'] = float(lr) |
|
config['config']['process'][0]['network']['linear'] = int(rank) |
|
config['config']['process'][0]['network']['linear_alpha'] = int(rank) |
|
config['config']['process'][0]['datasets'][0]['folder_path'] = dataset_folder |
|
if(concept_sentence): |
|
config['config']['process'][0]['trigger_word'] = concept_sentence |
|
if(sample_1 or sample_2 or sample_2): |
|
config['config']['process'][0]['train']['disable_sampling'] = False |
|
config['config']['process'][0]['sample']["sample_every"] = steps |
|
config['config']['process'][0]['sample']['prompts'] = [] |
|
if(sample_1): |
|
config['config']['process'][0]['sample']['prompts'].append(sample_1) |
|
if(sample_2): |
|
config['config']['process'][0]['sample']['prompts'].append(sample_2) |
|
if(sample_3): |
|
config['config']['process'][0]['sample']['prompts'].append(sample_3) |
|
else: |
|
config['config']['process'][0]['train']['disable_sampling'] = True |
|
|
|
config_path = f"config/{slugged_lora_name}.yaml" |
|
with open(config_path, "w") as f: |
|
yaml.dump(config, f) |
|
if(is_spaces): |
|
pass |
|
|
|
else: |
|
|
|
job = get_job(config_path) |
|
job.run() |
|
job.cleanup() |
|
|
|
return f"Training completed successfully. Model saved as {slugged_lora_name}" |
|
|
|
theme = gr.themes.Monochrome( |
|
text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"), |
|
font=[gr.themes.GoogleFont('Source Sans Pro'), 'ui-sans-serif', 'system-ui', 'sans-serif'], |
|
) |
|
css = ''' |
|
#component-1{text-align:center} |
|
.main_ui_logged_out{opacity: 0.3; pointer-events: none} |
|
.tabitem{border: 0px} |
|
''' |
|
|
|
def swap_visibilty(profile: gr.OAuthProfile | None): |
|
print(profile) |
|
if(is_spaces): |
|
if profile is None: |
|
return gr.update(elem_classes=["main_ui_logged_out"]) |
|
else: |
|
print(profile.name) |
|
return gr.update(elem_classes=["main_ui_logged_in"]) |
|
else: |
|
return gr.update(elem_classes=["main_ui_logged_in"]) |
|
|
|
with gr.Blocks(theme=theme, css=css) as demo: |
|
gr.Markdown('''# LoRA Ease for FLUX 🧞♂️ |
|
### Train a high quality FLUX LoRA in a breeze ༄ using [Ostris' AI Toolkit](https://github.com/ostris/ai-toolkit) and [AutoTrain Advanced](https://github.com/huggingface/autotrain-advanced)''') |
|
if(is_spaces): |
|
gr.LoginButton("Sign in with Hugging Face to train your LoRA on Spaces", visible=is_spaces) |
|
with gr.Tab("Train on Spaces" if is_spaces else "Train locally"): |
|
with gr.Column() as main_ui: |
|
with gr.Row(): |
|
lora_name = gr.Textbox(label="The name of your LoRA", info="This has to be a unique name", placeholder="e.g.: Persian Miniature Painting style, Cat Toy") |
|
|
|
|
|
|
|
concept_sentence = gr.Textbox( |
|
label="Trigger word/sentence", |
|
info="Trigger word or sentence to be used", |
|
placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'", |
|
interactive=True, |
|
) |
|
with gr.Group(visible=True) as image_upload: |
|
with gr.Row(): |
|
images = gr.File( |
|
file_types=["image"], |
|
label="Upload your images", |
|
file_count="multiple", |
|
interactive=True, |
|
visible=True, |
|
scale=1, |
|
) |
|
with gr.Column(scale=3, visible=False) as captioning_area: |
|
with gr.Column(): |
|
gr.Markdown("""# Custom captioning |
|
You can optionally add a custom caption for each image (or use an AI model for this). [trigger] will represent your concept sentence/trigger word. |
|
""") |
|
do_captioning = gr.Button("Add AI captions with Florence-2") |
|
output_components = [captioning_area] |
|
caption_list = [] |
|
for i in range(1, MAX_IMAGES + 1): |
|
locals()[f"captioning_row_{i}"] = gr.Row(visible=False) |
|
with locals()[f"captioning_row_{i}"]: |
|
locals()[f"image_{i}"] = gr.Image( |
|
type="filepath", |
|
width=111, |
|
height=111, |
|
min_width=111, |
|
interactive=False, |
|
scale=2, |
|
show_label=False, |
|
show_share_button=False, |
|
show_download_button=False |
|
) |
|
locals()[f"caption_{i}"] = gr.Textbox( |
|
label=f"Caption {i}", scale=15, interactive=True |
|
) |
|
|
|
output_components.append(locals()[f"captioning_row_{i}"]) |
|
output_components.append(locals()[f"image_{i}"]) |
|
output_components.append(locals()[f"caption_{i}"]) |
|
caption_list.append(locals()[f"caption_{i}"]) |
|
|
|
with gr.Accordion("Advanced options", open=False): |
|
steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1) |
|
lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6) |
|
rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4) |
|
|
|
with gr.Accordion("Sample prompts", visible=False) as sample: |
|
gr.Markdown("Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)") |
|
sample_1 = gr.Textbox(label="Test prompt 1") |
|
sample_2 = gr.Textbox(label="Test prompt 2") |
|
sample_3 = gr.Textbox(label="Test prompt 3") |
|
|
|
output_components.append(sample) |
|
output_components.append(sample_1) |
|
output_components.append(sample_2) |
|
output_components.append(sample_3) |
|
start = gr.Button("Start training") |
|
progress_area = gr.Markdown("") |
|
|
|
with gr.Tab("Train locally" if is_spaces else "Instructions"): |
|
gr.Markdown(f'''To use FLUX LoRA Ease locally with this UI, you can clone this repository (yes, HF Spaces are git repos!) |
|
```bash |
|
git clone https://huggingface.co/spaces/flux-train/flux-lora-trainer |
|
cd flux-lora-trainer |
|
pip install requirements_local.txt |
|
``` |
|
|
|
Then you can install ai-toolkit |
|
```bash |
|
git clone https://github.com/ostris/ai-toolkit.git |
|
cd ai-toolkit |
|
git submodule update --init --recursive |
|
python3 -m venv venv |
|
source venv/bin/activate |
|
# .\venv\Scripts\activate on windows |
|
# install torch first |
|
pip3 install torch |
|
pip3 install -r requirements.txt |
|
cd .. |
|
``` |
|
|
|
Login with Hugging Face to access FLUX.1 [dev], choose a token with `write` permissions to push your LoRAs to the HF Hub |
|
```bash |
|
huggingface-cli login |
|
``` |
|
|
|
Now you can run FLUX LoRA Ease locally by doing a simple |
|
```py |
|
python app.py |
|
``` |
|
If you prefer command line, you can run Ostris' [AI Toolkit](https://github.com/ostris/ai-toolkit) yourself directly. |
|
''') |
|
|
|
dataset_folder = gr.State() |
|
|
|
images.upload( |
|
load_captioning, |
|
inputs=[images, concept_sentence], |
|
outputs=output_components, |
|
queue=False |
|
) |
|
|
|
start.click( |
|
fn=create_dataset, |
|
inputs=[images] + caption_list, |
|
outputs=dataset_folder, |
|
queue=False |
|
).then( |
|
fn=start_training_spaces if is_spaces else start_training, |
|
inputs=[ |
|
lora_name, |
|
concept_sentence, |
|
steps, |
|
lr, |
|
rank, |
|
dataset_folder, |
|
sample_1, |
|
sample_2, |
|
sample_3, |
|
], |
|
outputs=progress_area, |
|
queue=False |
|
) |
|
|
|
do_captioning.click( |
|
fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list |
|
) |
|
demo.load(fn=swap_visibilty, outputs=main_ui, queue=False) |
|
|
|
if __name__ == "__main__": |
|
demo.queue() |
|
demo.launch(share=True) |