fffiloni's picture
Update app.py
2ff4ca9
raw
history blame
9.71 kB
import gradio as gr
import torch
import os
import requests
import subprocess
from subprocess import getoutput
from huggingface_hub import snapshot_download
hf_token = os.environ.get("HF_TOKEN_WITH_WRITE_PERMISSION")
is_shared_ui = True if "fffiloni/train-dreambooth-lora-sdxl" in os.environ['SPACE_ID'] else False
is_gpu_associated = torch.cuda.is_available()
if is_gpu_associated:
gpu_info = getoutput('nvidia-smi')
if("A10G" in gpu_info):
which_gpu = "A10G"
elif("T4" in gpu_info):
which_gpu = "T4"
else:
which_gpu = "CPU"
def swap_hardware(hf_token, hardware="cpu-basic"):
hardware_url = f"https://huggingface.co/spaces/{os.environ['SPACE_ID']}/hardware"
headers = { "authorization" : f"Bearer {hf_token}"}
body = {'flavor': hardware}
requests.post(hardware_url, json = body, headers=headers)
def swap_sleep_time(hf_token,sleep_time):
sleep_time_url = f"https://huggingface.co/api/spaces/{os.environ['SPACE_ID']}/sleeptime"
headers = { "authorization" : f"Bearer {hf_token}"}
body = {'seconds':sleep_time}
requests.post(sleep_time_url,json=body,headers=headers)
def get_sleep_time(hf_token):
sleep_time_url = f"https://huggingface.co/api/spaces/{os.environ['SPACE_ID']}"
headers = { "authorization" : f"Bearer {hf_token}"}
response = requests.get(sleep_time_url,headers=headers)
try:
gcTimeout = response.json()['runtime']['gcTimeout']
except:
gcTimeout = None
return gcTimeout
def write_to_community(title, description,hf_token):
from huggingface_hub import HfApi
api = HfApi()
api.create_discussion(repo_id=os.environ['SPACE_ID'], title=title, description=description,repo_type="space", token=hf_token)
def set_accelerate_default_config():
try:
subprocess.run(["accelerate", "config", "default"], check=True)
print("Accelerate default config set successfully!")
except subprocess.CalledProcessError as e:
print(f"An error occurred: {e}")
def train_dreambooth_lora_sdxl(instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu):
script_filename = "train_dreambooth_lora_sdxl.py" # Assuming it's in the same folder
command = [
"accelerate",
"launch",
script_filename, # Use the local script
"--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0",
"--pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix",
f"--instance_data_dir={instance_data_dir}",
f"--output_dir={lora_trained_xl_folder}",
"--mixed_precision=fp16",
f"--instance_prompt={instance_prompt}",
"--resolution=1024",
"--train_batch_size=2",
"--gradient_accumulation_steps=2",
"--gradient_checkpointing",
"--learning_rate=1e-4",
"--lr_scheduler=constant",
"--lr_warmup_steps=0",
"--enable_xformers_memory_efficient_attention",
"--mixed_precision=fp16",
"--use_8bit_adam",
f"--max_train_steps={max_train_steps}",
f"--checkpointing_steps={checkpoint_steps}",
"--seed=0",
"--push_to_hub",
f"--hub_token={hf_token}"
]
try:
subprocess.run(command, check=True)
print("Training is finished!")
if remove_gpu:
swap_hardware(hf_token, "cpu-basic")
except subprocess.CalledProcessError as e:
print(f"An error occurred: {e}")
title="There was an error on during your training"
description=f'''
Unfortunately there was an error during training your {lora_trained_xl_folder} model.
Please check it out below. Feel free to report this issue to [SD-XL Dreambooth LoRa Training](https://huggingface.co/spaces/fffiloni/train-dreambooth-lora-sdxl):
```
{str(e)}
```
'''
swap_hardware(hf_token, "cpu-basic")
write_to_community(title,description,hf_token)
def main(dataset_id,
lora_trained_xl_folder,
instance_prompt,
max_train_steps,
checkpoint_steps,
remove_gpu):
if is_shared_ui:
raise gr.Error("This Space only works in duplicated instances")
if not is_gpu_associated:
raise gr.Error("Please associate a T4 or A10G GPU for this Space")
if dataset_id == "":
raise gr.Error("You forgot to specify an image dataset")
if instance_prompt == "":
raise gr.Error("You forgot to specify a concept prompt")
if lora_trained_xl_folder == "":
raise gr.Error("You forgot to name the output folder for your model")
sleep_time = get_sleep_time(hf_token)
if sleep_time:
swap_sleep_time(hf_token, -1)
gr.Warning("If you did not check the `Remove GPU After training`, don't forget to remove the GPU attribution after you are done. ")
dataset_repo = dataset_id
# Automatically set local_dir based on the last part of dataset_repo
repo_parts = dataset_repo.split("/")
local_dir = f"./{repo_parts[-1]}" # Use the last part of the split
# Check if the directory exists and create it if necessary
if not os.path.exists(local_dir):
os.makedirs(local_dir)
gr.Info("Downloading dataset ...")
snapshot_download(
dataset_repo,
local_dir=local_dir,
repo_type="dataset",
ignore_patterns=".gitattributes",
token=hf_token
)
set_accelerate_default_config()
gr.Info("Training begins ...")
instance_data_dir = repo_parts[-1]
train_dreambooth_lora_sdxl(instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu)
return f"Done, your trained model has been stored in your models library: your_user_name/{lora-trained-xl-folder}"
css="""
#col-container {max-width: 780px; margin-left: auto; margin-right: auto;}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
if is_shared_ui:
top_description = gr.HTML(f'''
<div class="gr-prose" style="max-width: 80%">
<h2>Attention - This Space doesn't work in this shared UI</h2>
<p>For it to work, you can duplicate the Space and run it on your own profile using a (paid) private T4-small or A10G-small GPU for training. A T4 costs US$0.60/h, so it should cost < US$1 to train most models using default settings with it!&nbsp;&nbsp;<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
</div>
''')
else:
if(is_gpu_associated):
top_description = gr.HTML(f'''
<div class="gr-prose" style="max-width: 80%">
<h2>You have successfully associated a {which_gpu} GPU to the SD-XL Dreambooth LoRa Training Space πŸŽ‰</h2>
<p>You can now train your model! You will be billed by the minute from when you activated the GPU until when it is turned it off.</p>
</div>
''')
else:
top_description = gr.HTML(f'''
<div class="gr-prose" style="max-width: 80%">
<h2>You have successfully duplicated the SD-XL Dreambooth LoRa Training Space πŸŽ‰</h2>
<p>There's only one step left before you can train your model: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4-small or A10G-small GPU</b> to it (via the Settings tab)</a> and run the training below. You will be billed by the minute from when you activate the GPU until when it is turned it off.</p>
</div>
''')
gr.Markdown("# SD-XL Dreambooth LoRa Training UI πŸ’­")
with gr.Row():
dataset_id = gr.Textbox(label="Dataset ID", info="use one of your previously uploaded image datasets on your HF profile", placeholder="diffusers/dog-example")
instance_prompt = gr.Textbox(label="Concept prompt", info="concept prompt - use a unique, made up word to avoid collisions")
with gr.Row():
model_output_folder = gr.Textbox(label="Output model folder name", placeholder="lora-trained-xl-folder")
max_train_steps = gr.Number(label="Max Training Steps", value=500)
checkpoint_steps = gr.Number(label="Checkpoints Steps", value=100)
remove_gpu = gr.Checkbox(label="Remove GPU After Training", value=True)
train_button = gr.Button("Train !")
status = gr.Textbox(label="Training status")
train_button.click(
fn = main,
inputs = [
dataset_id,
model_output_folder,
instance_prompt,
max_train_steps,
checkpoint_steps,
remove_gpu
],
outputs = [status]
)
demo.queue().launch()