NASAM / app.py
RATHOD-SHUBHAM
app v01
445df8b
# Todo: Load Image
import numpy as np
import torch
import matplotlib.pyplot as plt
import cv2
import streamlit as st
import os
# hide hamburger and customize footer
hide_menu= """
<style>
#MainMenu {
visibility:hidden;
}
footer{
visibility:visible;
}
footer:after{
content: 'With 🫶️ from Shubham Shankar.';
display:block;
position:relative;
color:grey;
padding;5px;
top:3px;
}
</style>
"""
# Styling ----------------------------------------------------------------------
st.image("icon.jpg", width=85)
st.title("NASAM")
st.subheader("Object Detection and Mask")
st.markdown(hide_menu, unsafe_allow_html=True)
# Intro ----------------------------------------------------------------------
st.write(
"""
Hi 👋, I'm **:red[Shubham Shankar]**, and welcome to my **:green[Object Detection + MASK Application]**! :rocket: This program makes use of **:blue[YOLO-NAS]** and **:orange[SAM]** model,
which was specially trained using the **:violet[Roboflow]** dataset. ✨
"""
)
st.markdown('---')
st.write(
"""
### App Interface!!
:dog: The web app has an easy-to-use interface.
1] **:green[Upload File]**: Upload an image using the provided button. The app will perform inference on the image using a machine learning model and display the results.
2] **:violet[Confidence Threshold]**: Adjust the confidence threshold to get a better result.
"""
)
st.markdown('---')
st.error(
"""
Connect with me on [**Github**](https://github.com/RATHOD-SHUBHAM) and [**LinkedIn**](https://www.linkedin.com/in/shubhamshankar/). ✨
""",
icon="🧟‍♂️",
)
st.markdown('---')
# remove file in a folder ----------------------------------------------------------------------
import shutil
folder = 'op_detection'
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print('Failed to delete %s. Reason: %s' % (file_path, e))
# Save File ------------------------------------------------------------------------------------------
def save_uploadedfile(uploadedfile):
with open(os.path.join("ip_image", uploadedfile.name), "wb") as f:
f.write(uploadedfile.getbuffer())
# Model ----------------------------------------------------------------------------------------------------
image_file = st.file_uploader("Upload An Image", type=['png','jpeg','jpg'])
if image_file is not None:
file_details = {"FileName":image_file.name,"FileType":image_file.type}
conf_threshold = st.slider('Confidence Threshold', min_value=0.0, max_value=1.0, value=0.35)
if st.button('RUN'):
st.write(file_details)
save_uploadedfile(image_file)
col1, col2, col3 = st.columns(3)
image = cv2.imread("ip_image/" + image_file.name)
with col1:
st.text("Raw Image")
st.image(image)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Todo: Development
from super_gradients.training import models
# define class name
class_names = ['Car boot', 'Car hood', 'Driver-s door - -F-R-', 'Fender - -F-L-', 'Fender - -F-R-', 'Fender - -R-L-', 'Fender - -R-R-', 'Front bumper', 'Headlight - -L-', 'Headlight - -R-', 'Passenger-s door - -F-L-', 'Passenger-s door - -R-L-', 'Passenger-s door - -R-R-', 'Rear bumper', 'Rear light - -L-', 'Rear light - -R-', 'Side bumper - -L-', 'Side bumper - -R-', 'Side mirror - -L-', 'Side mirror - -R-']
# Todo: Get the model
device = 'cuda' if torch.cuda.is_available() else "cpu"
model_nas = models.get('yolo_nas_l',
num_classes= 20,
checkpoint_path='nas_weight/ckpt_best.pth')
# Todo: Object detection prediction
model_nas.predict(image, conf = conf_threshold).save('op_detection')
with col2:
st.text("Detection Output")
st.image('op_detection/pred_0.jpg')
# Todo: Get BBOX
model_pred = list(model_nas.predict(image, conf = conf_threshold)._images_prediction_lst)
bboxes_xyxy = model_pred[0].prediction.bboxes_xyxy.tolist()
# Todo: SAM
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
from segment_anything import sam_model_registry, SamPredictor
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
sam_checkpoint = "sam_weight/sam_vit_h_4b8939.pth"
model_type = "vit_h"
device = 'cuda' if torch.cuda.is_available() else "cpu"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
predictor = SamPredictor(sam)
mask_generator = SamAutomaticMaskGenerator(sam)
# Todo: SAM predictor
predictor.set_image(image)
tensor_box = torch.tensor(bboxes_xyxy, device=predictor.device)
transformed_boxes = predictor.transform.apply_boxes_torch(tensor_box, image.shape[:2])
batch_masks, batch_scores, batch_logits = predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
)
plt.figure(figsize=(10, 10))
plt.imshow(image)
for mask in batch_masks:
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
plt.axis('off')
plt.savefig('my_image.jpg')
with col3:
st.text("Masked Output")
st.image('my_image.jpg')