|
|
|
|
|
import numpy as np |
|
import torch |
|
import matplotlib.pyplot as plt |
|
import cv2 |
|
import streamlit as st |
|
import os |
|
|
|
|
|
hide_menu= """ |
|
<style> |
|
|
|
#MainMenu { |
|
visibility:hidden; |
|
} |
|
|
|
footer{ |
|
visibility:visible; |
|
} |
|
|
|
footer:after{ |
|
content: 'With 🫶️ from Shubham Shankar.'; |
|
display:block; |
|
position:relative; |
|
color:grey; |
|
padding;5px; |
|
top:3px; |
|
} |
|
</style> |
|
|
|
""" |
|
|
|
|
|
st.image("icon.jpg", width=85) |
|
st.title("NASAM") |
|
st.subheader("Object Detection and Mask") |
|
st.markdown(hide_menu, unsafe_allow_html=True) |
|
|
|
|
|
|
|
st.write( |
|
""" |
|
|
|
Hi 👋, I'm **:red[Shubham Shankar]**, and welcome to my **:green[Object Detection + MASK Application]**! :rocket: This program makes use of **:blue[YOLO-NAS]** and **:orange[SAM]** model, |
|
which was specially trained using the **:violet[Roboflow]** dataset. ✨ |
|
|
|
""" |
|
) |
|
|
|
st.markdown('---') |
|
|
|
st.write( |
|
""" |
|
### App Interface!! |
|
|
|
:dog: The web app has an easy-to-use interface. |
|
|
|
1] **:green[Upload File]**: Upload an image using the provided button. The app will perform inference on the image using a machine learning model and display the results. |
|
|
|
2] **:violet[Confidence Threshold]**: Adjust the confidence threshold to get a better result. |
|
|
|
""" |
|
) |
|
|
|
st.markdown('---') |
|
|
|
st.error( |
|
""" |
|
Connect with me on [**Github**](https://github.com/RATHOD-SHUBHAM) and [**LinkedIn**](https://www.linkedin.com/in/shubhamshankar/). ✨ |
|
""", |
|
icon="🧟♂️", |
|
) |
|
|
|
st.markdown('---') |
|
|
|
|
|
import shutil |
|
folder = 'op_detection' |
|
for filename in os.listdir(folder): |
|
file_path = os.path.join(folder, filename) |
|
try: |
|
if os.path.isfile(file_path) or os.path.islink(file_path): |
|
os.unlink(file_path) |
|
elif os.path.isdir(file_path): |
|
shutil.rmtree(file_path) |
|
except Exception as e: |
|
print('Failed to delete %s. Reason: %s' % (file_path, e)) |
|
|
|
|
|
def save_uploadedfile(uploadedfile): |
|
with open(os.path.join("ip_image", uploadedfile.name), "wb") as f: |
|
f.write(uploadedfile.getbuffer()) |
|
|
|
|
|
image_file = st.file_uploader("Upload An Image", type=['png','jpeg','jpg']) |
|
if image_file is not None: |
|
file_details = {"FileName":image_file.name,"FileType":image_file.type} |
|
|
|
conf_threshold = st.slider('Confidence Threshold', min_value=0.0, max_value=1.0, value=0.35) |
|
|
|
if st.button('RUN'): |
|
|
|
st.write(file_details) |
|
save_uploadedfile(image_file) |
|
|
|
|
|
|
|
col1, col2, col3 = st.columns(3) |
|
|
|
image = cv2.imread("ip_image/" + image_file.name) |
|
|
|
with col1: |
|
st.text("Raw Image") |
|
st.image(image) |
|
|
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
|
|
from super_gradients.training import models |
|
|
|
|
|
class_names = ['Car boot', 'Car hood', 'Driver-s door - -F-R-', 'Fender - -F-L-', 'Fender - -F-R-', 'Fender - -R-L-', 'Fender - -R-R-', 'Front bumper', 'Headlight - -L-', 'Headlight - -R-', 'Passenger-s door - -F-L-', 'Passenger-s door - -R-L-', 'Passenger-s door - -R-R-', 'Rear bumper', 'Rear light - -L-', 'Rear light - -R-', 'Side bumper - -L-', 'Side bumper - -R-', 'Side mirror - -L-', 'Side mirror - -R-'] |
|
|
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else "cpu" |
|
model_nas = models.get('yolo_nas_l', |
|
num_classes= 20, |
|
checkpoint_path='nas_weight/ckpt_best.pth') |
|
|
|
|
|
|
|
|
|
model_nas.predict(image, conf = conf_threshold).save('op_detection') |
|
|
|
with col2: |
|
st.text("Detection Output") |
|
st.image('op_detection/pred_0.jpg') |
|
|
|
|
|
model_pred = list(model_nas.predict(image, conf = conf_threshold)._images_prediction_lst) |
|
|
|
bboxes_xyxy = model_pred[0].prediction.bboxes_xyxy.tolist() |
|
|
|
|
|
|
|
def show_mask(mask, ax, random_color=False): |
|
if random_color: |
|
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) |
|
else: |
|
color = np.array([30/255, 144/255, 255/255, 0.6]) |
|
h, w = mask.shape[-2:] |
|
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) |
|
ax.imshow(mask_image) |
|
|
|
def show_points(coords, labels, ax, marker_size=375): |
|
pos_points = coords[labels==1] |
|
neg_points = coords[labels==0] |
|
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) |
|
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) |
|
|
|
def show_box(box, ax): |
|
x0, y0 = box[0], box[1] |
|
w, h = box[2] - box[0], box[3] - box[1] |
|
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) |
|
|
|
from segment_anything import sam_model_registry, SamPredictor |
|
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor |
|
|
|
sam_checkpoint = "sam_weight/sam_vit_h_4b8939.pth" |
|
model_type = "vit_h" |
|
|
|
device = 'cuda' if torch.cuda.is_available() else "cpu" |
|
|
|
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) |
|
sam.to(device=device) |
|
|
|
predictor = SamPredictor(sam) |
|
mask_generator = SamAutomaticMaskGenerator(sam) |
|
|
|
|
|
predictor.set_image(image) |
|
|
|
tensor_box = torch.tensor(bboxes_xyxy, device=predictor.device) |
|
|
|
transformed_boxes = predictor.transform.apply_boxes_torch(tensor_box, image.shape[:2]) |
|
|
|
batch_masks, batch_scores, batch_logits = predictor.predict_torch( |
|
point_coords=None, |
|
point_labels=None, |
|
boxes=transformed_boxes, |
|
multimask_output=False, |
|
) |
|
|
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(image) |
|
|
|
for mask in batch_masks: |
|
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True) |
|
|
|
plt.axis('off') |
|
plt.savefig('my_image.jpg') |
|
|
|
with col3: |
|
st.text("Masked Output") |
|
st.image('my_image.jpg') |