Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,165 +1,151 @@
|
|
1 |
api_key = "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"
|
2 |
|
3 |
-
import streamlit as st
|
4 |
-
from langchain_groq import ChatGroq
|
5 |
-
from langchain_community.utilities import ArxivAPIWrapper, WikipediaAPIWrapper
|
6 |
-
from langchain_community.tools import ArxivQueryRun, WikipediaQueryRun, DuckDuckGoSearchRun
|
7 |
-
from langchain.agents import initialize_agent, AgentType
|
8 |
import os
|
|
|
9 |
import requests
|
10 |
-
import
|
11 |
from dotenv import load_dotenv
|
|
|
12 |
|
13 |
# Load environment variables
|
14 |
load_dotenv()
|
15 |
|
16 |
-
# Constants
|
17 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
#
|
20 |
-
@st.cache_resource
|
21 |
-
def load_tools():
|
22 |
-
with st.spinner("Initializing tools (first time may take a few seconds)..."):
|
23 |
-
api_wrapper_arxiv = ArxivAPIWrapper(top_k_results=1, doc_content_chars_max=250)
|
24 |
-
arxiv = ArxivQueryRun(api_wrapper=api_wrapper_arxiv)
|
25 |
-
api_wrapper_wiki = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=250)
|
26 |
-
wiki = WikipediaQueryRun(api_wrapper=api_wrapper_wiki)
|
27 |
-
search = DuckDuckGoSearchRun(name="Search")
|
28 |
-
# Warm up tools
|
29 |
-
arxiv.run("machine learning")
|
30 |
-
wiki.run("machine learning")
|
31 |
-
return [search, arxiv, wiki]
|
32 |
-
|
33 |
-
tools = load_tools()
|
34 |
-
|
35 |
-
# Streamlit app layout
|
36 |
-
st.title("Langchain - Chat with Search & Evaluation")
|
37 |
-
|
38 |
-
# Sidebar for settings
|
39 |
-
st.sidebar.title("Settings")
|
40 |
-
api_key = st.sidebar.text_input("Enter your Groq API Key:", type="password")
|
41 |
-
|
42 |
-
# Initialize chat messages
|
43 |
-
if "messages" not in st.session_state:
|
44 |
-
st.session_state["messages"] = [
|
45 |
-
{"role": "assistant", "content": "Hi, I am a Chatbot who can search the web and evaluate questions. How can I help you?"}
|
46 |
-
]
|
47 |
-
|
48 |
-
# Display chat messages
|
49 |
-
for msg in st.session_state.messages:
|
50 |
-
st.chat_message(msg["role"]).write(msg["content"])
|
51 |
-
|
52 |
-
# Chat input
|
53 |
-
if prompt := st.chat_input(placeholder="What is machine learning?"):
|
54 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
55 |
-
st.chat_message("user").write(prompt)
|
56 |
-
|
57 |
-
if not api_key:
|
58 |
-
st.error("Please enter your Groq API key in the sidebar.")
|
59 |
-
st.stop()
|
60 |
-
|
61 |
-
llm = ChatGroq(groq_api_key=api_key, model_name="llama3-70b-8192")
|
62 |
-
search_agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True)
|
63 |
-
|
64 |
-
with st.chat_message("assistant"):
|
65 |
-
response = search_agent.run(st.session_state.messages)
|
66 |
-
st.session_state.messages.append({'role': 'assistant', "content": response})
|
67 |
-
st.write(response)
|
68 |
-
|
69 |
-
# Basic Agent Evaluation Section
|
70 |
-
st.sidebar.title("Basic Agent Evaluation")
|
71 |
-
|
72 |
-
def run_evaluation():
|
73 |
-
"""Function to run the evaluation with progress updates"""
|
74 |
-
if not api_key:
|
75 |
-
st.error("Please enter your Groq API key in the sidebar.")
|
76 |
-
return "API key required", pd.DataFrame()
|
77 |
-
|
78 |
-
# Setup progress tracking
|
79 |
-
progress_bar = st.sidebar.progress(0)
|
80 |
-
status_text = st.sidebar.empty()
|
81 |
-
results_container = st.empty()
|
82 |
-
|
83 |
-
username = "streamlit_user"
|
84 |
-
api_url = DEFAULT_API_URL
|
85 |
-
questions_url = f"{api_url}/questions"
|
86 |
-
submit_url = f"{api_url}/submit"
|
87 |
-
space_id = os.getenv("SPACE_ID", "local")
|
88 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id != "local" else "local_execution"
|
89 |
-
|
90 |
try:
|
91 |
-
|
92 |
-
status_text.text("📡 Fetching questions...")
|
93 |
-
response = requests.get(questions_url, timeout=15)
|
94 |
-
response.raise_for_status()
|
95 |
questions_data = response.json()
|
96 |
-
total_questions = len(questions_data)
|
97 |
-
status_text.text(f"✅ Found {total_questions} questions")
|
98 |
-
|
99 |
if not questions_data:
|
100 |
-
return "No questions
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
progress_bar.progress(progress)
|
113 |
-
status_text.text(f"🔍 Processing question {i+1}/{total_questions}...")
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
138 |
|
139 |
-
|
140 |
-
f"✅
|
141 |
-
f"📊 Score: {
|
142 |
-
f"
|
143 |
-
f"
|
|
|
144 |
)
|
145 |
-
return final_status, pd.DataFrame(results_log)
|
146 |
-
|
147 |
except Exception as e:
|
148 |
-
return f"
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
# Evaluation button in sidebar
|
155 |
-
if st.sidebar.button("🚀 Run Evaluation & Submit Answers"):
|
156 |
-
with st.spinner("Starting evaluation..."):
|
157 |
-
status, results = run_evaluation()
|
158 |
|
159 |
-
|
160 |
-
st.sidebar.text_area("Results", value=status, height=150)
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
|
|
1 |
api_key = "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"
|
2 |
|
|
|
|
|
|
|
|
|
|
|
3 |
import os
|
4 |
+
import gradio as gr
|
5 |
import requests
|
6 |
+
from huggingface_hub import InferenceClient, login
|
7 |
from dotenv import load_dotenv
|
8 |
+
import pandas as pd
|
9 |
|
10 |
# Load environment variables
|
11 |
load_dotenv()
|
12 |
|
13 |
+
# Constants
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
+
MODEL_NAME = "meta-llama/llama-4-maverick-17b-128e-instruct"
|
16 |
+
|
17 |
+
# Initialize the Llama Maverick client
|
18 |
+
class MaverickAgent:
|
19 |
+
def __init__(self):
|
20 |
+
try:
|
21 |
+
self.client = InferenceClient(
|
22 |
+
model=MODEL_NAME,
|
23 |
+
token=os.getenv("HUGGINGFACE_TOKEN")
|
24 |
+
)
|
25 |
+
print("MaverickAgent initialized successfully")
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Error initializing MaverickAgent: {e}")
|
28 |
+
raise
|
29 |
+
|
30 |
+
def __call__(self, question: str) -> str:
|
31 |
+
try:
|
32 |
+
print(f"Processing question: {question[:100]}...")
|
33 |
+
|
34 |
+
# Custom prompt template for the Maverick model
|
35 |
+
prompt = f"""<|begin_of_text|>
|
36 |
+
<|start_header_id|>system<|end_header_id|>
|
37 |
+
You are an AI assistant that provides accurate and concise answers to questions.
|
38 |
+
Be factual and respond with just the answer unless asked to elaborate.
|
39 |
+
<|eot_id|>
|
40 |
+
<|start_header_id|>user<|end_header_id|>
|
41 |
+
{question}
|
42 |
+
<|eot_id|>
|
43 |
+
<|start_header_id|>assistant<|end_header_id|>"""
|
44 |
+
|
45 |
+
response = self.client.text_generation(
|
46 |
+
prompt,
|
47 |
+
max_new_tokens=256,
|
48 |
+
temperature=0.7,
|
49 |
+
do_sample=True,
|
50 |
+
)
|
51 |
+
|
52 |
+
# Clean up the response
|
53 |
+
answer = response.split("<|eot_id|>")[0].strip()
|
54 |
+
print(f"Generated answer: {answer[:200]}...")
|
55 |
+
return answer
|
56 |
+
except Exception as e:
|
57 |
+
print(f"Error processing question: {e}")
|
58 |
+
return f"Error: {str(e)}"
|
59 |
+
|
60 |
+
# Authentication
|
61 |
+
try:
|
62 |
+
login(token=os.getenv("HUGGINGFACE_TOKEN"))
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Authentication error: {e}")
|
65 |
+
|
66 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
67 |
+
if not profile:
|
68 |
+
return "Please log in with Hugging Face first.", None
|
69 |
+
|
70 |
+
# Initialize agent
|
71 |
+
try:
|
72 |
+
agent = MaverickAgent()
|
73 |
+
except Exception as e:
|
74 |
+
return f"Agent initialization failed: {e}", None
|
75 |
|
76 |
+
# Fetch questions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
try:
|
78 |
+
response = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15)
|
|
|
|
|
|
|
79 |
questions_data = response.json()
|
|
|
|
|
|
|
80 |
if not questions_data:
|
81 |
+
return "No questions available.", None
|
82 |
+
except Exception as e:
|
83 |
+
return f"Failed to fetch questions: {e}", None
|
84 |
+
|
85 |
+
# Process questions
|
86 |
+
results = []
|
87 |
+
answers = []
|
88 |
+
for i, item in enumerate(questions_data):
|
89 |
+
task_id = item.get("task_id")
|
90 |
+
question = item.get("question")
|
91 |
+
if not task_id or not question:
|
92 |
+
continue
|
|
|
|
|
93 |
|
94 |
+
try:
|
95 |
+
answer = agent(question)
|
96 |
+
answers.append({"task_id": task_id, "submitted_answer": answer})
|
97 |
+
results.append({
|
98 |
+
"Task ID": task_id,
|
99 |
+
"Question": question[:100] + "..." if len(question) > 100 else question,
|
100 |
+
"Answer": answer[:100] + "..." if len(answer) > 100 else answer
|
101 |
+
})
|
102 |
+
except Exception as e:
|
103 |
+
results.append({
|
104 |
+
"Task ID": task_id,
|
105 |
+
"Question": question,
|
106 |
+
"Answer": f"Error: {str(e)}"
|
107 |
+
})
|
108 |
+
|
109 |
+
# Submit answers
|
110 |
+
try:
|
111 |
+
submission = {
|
112 |
+
"username": profile.username,
|
113 |
+
"agent_code": f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}",
|
114 |
+
"answers": answers
|
115 |
+
}
|
116 |
+
response = requests.post(f"{DEFAULT_API_URL}/submit", json=submission, timeout=60)
|
117 |
+
result = response.json()
|
118 |
|
119 |
+
return (
|
120 |
+
f"✅ Submitted {len(answers)} answers\n"
|
121 |
+
f"📊 Score: {result.get('score', 'N/A')}%\n"
|
122 |
+
f"🔢 Correct: {result.get('correct_count', 0)}/{len(answers)}\n"
|
123 |
+
f"🤖 Model: {MODEL_NAME}",
|
124 |
+
pd.DataFrame(results)
|
125 |
)
|
|
|
|
|
126 |
except Exception as e:
|
127 |
+
return f"Submission failed: {e}", pd.DataFrame(results)
|
128 |
+
|
129 |
+
# Gradio Interface
|
130 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
131 |
+
gr.Markdown("# 🦙 Llama 4 Maverick Agent")
|
132 |
+
gr.Markdown(f"Using `{MODEL_NAME}` for evaluation")
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
gr.LoginButton()
|
|
|
135 |
|
136 |
+
with gr.Row():
|
137 |
+
run_btn = gr.Button("Run Evaluation", variant="primary")
|
138 |
+
|
139 |
+
with gr.Row():
|
140 |
+
status = gr.Textbox(label="Status", interactive=False)
|
141 |
+
results = gr.DataFrame(label="Results", wrap=True)
|
142 |
+
|
143 |
+
run_btn.click(
|
144 |
+
fn=run_and_submit_all,
|
145 |
+
outputs=[status, results]
|
146 |
+
)
|
147 |
+
|
148 |
+
if __name__ == "__main__":
|
149 |
+
demo.launch()
|
150 |
+
|
151 |
|