Spaces:
Runtime error
Runtime error
import streamlit as st | |
from langchain_groq import ChatGroq | |
from langchain_community.utilities import ArxivAPIWrapper, WikipediaAPIWrapper | |
from langchain_community.tools import ArxivQueryRun, WikipediaQueryRun, DuckDuckGoSearchRun | |
from langchain.agents import initialize_agent, AgentType | |
from langchain.callbacks import StreamlitCallbackHandler | |
import os | |
from dotenv import load_dotenv | |
# Used the inbuilt tools of Arxiv and Wikipedia | |
api_wrapper_arxiv = ArxivAPIWrapper(top_k_results=1, doc_content_chars_max=250) | |
arxiv = ArxivQueryRun(api_wrapper=api_wrapper_arxiv) | |
api_wrapper_wiki = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=250) | |
wiki = WikipediaQueryRun(api_wrapper=api_wrapper_wiki) | |
search = DuckDuckGoSearchRun(name="Search") | |
st.title("Langchain - Chat with Search") | |
""" | |
In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app. | |
Try more LangChain 🤝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent). | |
""" | |
# Sidebar for settings | |
st.sidebar.title("Settings") | |
api_key = st.sidebar.text_input("Enter your Groq API Key:", type="password") | |
if "messages" not in st.session_state: | |
st.session_state["messages"] = [ | |
{"role":"assistant", "content":"Hi, I am a Chatbot who can search the web. How can I help you ?"} | |
] | |
for msg in st.session_state.messages: | |
st.chat_message(msg["role"]).write(msg["content"]) | |
if prompt:=st.chat_input(placeholder="What is machine learning ?"): | |
st.session_state.messages.append({"role":"user", "content":prompt}) | |
st.chat_message("user").write(prompt) | |
llm = ChatGroq(groq_api_key=api_key, model_name="Llama3-8b-8192", streaming=True) | |
tools = [search, arxiv, wiki] | |
search_agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True) | |
with st.chat_message("assistant"): | |
st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False) | |
response = search_agent.run(st.session_state.messages, callbacks=[st_cb]) | |
st.session_state.messages.append({'role':'assistant', "content":response}) | |
st.write(response) | |