|
"""LangGraph Agent""" |
|
import os |
|
from dotenv import load_dotenv |
|
from langchain_groq import ChatGroq |
|
from langchain_core.tools import tool |
|
from langgraph.prebuilt import ToolNode |
|
from langgraph.prebuilt import tools_condition |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_community.tools import DuckDuckGoSearchResults |
|
|
|
load_dotenv() |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
""" |
|
Search DuckDuckGo for a query. |
|
|
|
Args: |
|
query: The search query. |
|
|
|
Returns: |
|
A dict with key ``"web_results"`` containing a |
|
markdown-formatted string of the retrieved documents. |
|
""" |
|
|
|
search = DuckDuckGoSearchResults(max_results=3) |
|
|
|
|
|
search_result = search.invoke(query) |
|
|
|
return {"web_results": search_result} |
|
|
|
tools = [ |
|
web_search, |
|
] |
|
|
|
llm = ChatGroq(model="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0) |
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
|
|
def start_preprocess(state: MessagesState): |
|
|
|
system_prompt = "You are a general AI assistant. I will ask you a question. Your answer should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string." |
|
sys_msg = SystemMessage(content=system_prompt) |
|
return {"messages": [sys_msg] + state["messages"]} |
|
|
|
|
|
def assistant(state: MessagesState): |
|
"""Assistant node""" |
|
return {"messages": [llm_with_tools.invoke(state["messages"])]} |
|
|
|
builder = StateGraph(MessagesState) |
|
builder.add_node("start_preprocess", start_preprocess) |
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
builder.add_edge(START, "start_preprocess") |
|
builder.add_edge("start_preprocess", "assistant") |
|
builder.add_conditional_edges( |
|
"assistant", |
|
tools_condition, |
|
) |
|
builder.add_edge("tools", "assistant") |
|
|
|
|
|
graph = builder.compile() |
|
|
|
if __name__ == "__main__": |
|
question = "NAMO age ?" |
|
|
|
messages = [HumanMessage(content=question)] |
|
messages = graph.invoke({"messages": messages}) |
|
for m in messages["messages"]: |
|
m.pretty_print() |
|
|