Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
from langchain_core.messages import AIMessage | |
MODEL_REPO = "Rahul-8799/project_manager_gemma3" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_REPO, | |
torch_dtype=torch.float16, | |
device_map="auto" | |
) | |
def run(state: dict) -> dict: | |
"""Creates project plan based on product requirements.""" | |
messages = state["messages"] | |
prompt = messages[-1].content | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) | |
output_ids = model.generate(input_ids, max_new_tokens=3000) | |
output = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
return { | |
"messages": [AIMessage(content=output)], | |
"chat_log": state["chat_log"] + [{"role": "Project Manager", "content": output}], | |
"proj_output": output, | |
} |