Rahiq's picture
Deploy waste classification backend with ML model
bf17f74

Backend Inference Service

FastAPI-based REST API for waste classification inference and feedback collection.

Setup

1. Install Dependencies

```bash pip install -r backend/requirements.txt pip install -r ml/requirements.txt ```

2. Train or Download Model

Ensure you have a trained model at ml/models/best_model.pth:

```bash

Train a model

python ml/train.py

Or download a pretrained model (if available)

Place it in ml/models/best_model.pth

```

3. Start Service

```bash

Development

python backend/inference_service.py

Production with Gunicorn

gunicorn backend.inference_service:app -w 4 -k uvicorn.workers.UvicornWorker --bind 0.0.0.0:8000 ```

Service will be available at http://localhost:8000

API Endpoints

Health Check

```bash GET / GET /health ```

Response: ```json { "status": "healthy", "model_loaded": true, "timestamp": "2024-01-01T00:00:00" } ```

Predict

```bash POST /predict Content-Type: application/json

{ "image": "..." } ```

Response: ```json { "category": "recyclable", "confidence": 0.95, "probabilities": { "recyclable": 0.95, "organic": 0.02, "wet-waste": 0.01, "dry-waste": 0.01, "ewaste": 0.005, "hazardous": 0.003, "landfill": 0.002 }, "timestamp": 1704067200000 } ```

Feedback

```bash POST /feedback Content-Type: application/json

{ "image": "...", "predicted_category": "recyclable", "corrected_category": "organic", "confidence": 0.75 } ```

Response: ```json { "status": "success", "message": "Feedback saved for retraining", "saved_path": "ml/data/retraining/organic/feedback_20240101_120000.jpg" } ```

Trigger Retraining

```bash POST /retrain Authorization: Bearer ```

Response: ```json { "status": "started", "message": "Retraining initiated with 150 new samples", "feedback_count": 150 } ```

Retraining Status

```bash GET /retrain/status ```

Response: ```json { "status": "success", "total_retrains": 3, "events": [...], "latest": { "version": 3, "timestamp": "2024-01-01T00:00:00", "accuracy": 92.5, "improvement": 2.3, "new_samples": 150 } } ```

Statistics

```bash GET /stats ```

Response: ```json { "model_loaded": true, "categories": ["recyclable", "organic", ...], "feedback_samples": 150, "feedback_by_category": { "recyclable": 45, "organic": 38, ... } } ```

Docker Deployment

Build and Run

```bash

Build image

docker build -f backend/Dockerfile -t waste-classification-api .

Run container

docker run -p 8000:8000
-v $(pwd)/ml/models:/app/ml/models
-v $(pwd)/ml/data:/app/ml/data
waste-classification-api ```

Using Docker Compose

```bash

Start all services

docker-compose up -d

View logs

docker-compose logs -f

Stop services

docker-compose down ```

Environment Variables

  • PORT: Server port (default: 8000)
  • ADMIN_API_KEY: Admin key for retraining endpoint

Performance

  • Inference Time: ~50ms per image (CPU)
  • Throughput: ~20 requests/second (single worker)
  • Memory: ~500MB with model loaded
  • Scaling: Deploy multiple workers for higher throughput

Production Deployment

Railway / Render

  1. Connect your repository
  2. Set build command: pip install -r backend/requirements.txt -r ml/requirements.txt
  3. Set start command: python backend/inference_service.py
  4. Set environment variables
  5. Deploy

AWS EC2

  1. Launch EC2 instance (t3.medium or higher)
  2. Install Docker
  3. Clone repository
  4. Run with Docker Compose
  5. Configure security group (port 8000)
  6. Set up SSL with Nginx reverse proxy

Vercel (Not Recommended)

FastAPI with ML models exceeds serverless function limits. Use Railway, Render, or AWS EC2 instead.

Monitoring

Add application monitoring:

```python from prometheus_fastapi_instrumentator import Instrumentator

Instrumentator().instrument(app).expose(app) ```

Access metrics at /metrics

Security

  • Add rate limiting with slowapi
  • Implement proper authentication
  • Validate image sizes and formats
  • Use HTTPS in production
  • Restrict CORS origins
  • Sanitize file uploads ```