|
import random |
|
import math |
|
import numpy as np |
|
from PIL import Image |
|
from skimage.draw import line |
|
from skimage import morphology |
|
import cv2 |
|
|
|
def line_crosses_cracks(start, end, img): |
|
rr, cc = line(start[0], start[1], end[0], end[1]) |
|
|
|
if len(rr) > 1 and len(cc) > 1: |
|
return np.any(img[rr[1:], cc[1:]] == 255) |
|
return False |
|
|
|
def random_walk(img_array, k=8, m=0.1, min_steps=50, max_steps=200, length=2, degree_range=30, seed=None): |
|
|
|
if seed is not None: |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
|
|
|
|
img_array = cv2.ximgproc.thinning(img_array) |
|
|
|
rows, cols = img_array.shape |
|
|
|
white_pixels = np.column_stack(np.where(img_array == 255)) |
|
original_crack_count = len(white_pixels) |
|
|
|
|
|
if white_pixels.size == 0: |
|
raise ValueError("No initial crack pixels found in the image.") |
|
if k > len(white_pixels): |
|
raise ValueError("k is greater than the number of existing crack pixels.") |
|
initial_points = white_pixels[random.sample(range(len(white_pixels)), k)] |
|
|
|
|
|
step_counts = {i: random.randint(min_steps, max_steps) for i in range(k)} |
|
|
|
main_angles = {i: random.uniform(0, 360) for i in range(k)} |
|
|
|
grown_crack_count = 0 |
|
|
|
|
|
for idx, point in enumerate(initial_points): |
|
current_pos = tuple(point) |
|
current_steps = 0 |
|
while current_steps < step_counts[idx]: |
|
|
|
current_ratio = np.sum(img_array == 255) / (rows * cols) |
|
if current_ratio >= m: |
|
return img_array, {'original_crack_count': original_crack_count, 'grown_crack_count': grown_crack_count} |
|
|
|
|
|
main_angle = main_angles[idx] |
|
angle = math.radians(main_angle + random.uniform(-degree_range, degree_range)) |
|
|
|
|
|
delta_row = length * math.sin(angle) |
|
delta_col = length * math.cos(angle) |
|
next_pos = (int(current_pos[0] + delta_row), int(current_pos[1] + delta_col)) |
|
|
|
|
|
if 0 <= next_pos[0] < rows and 0 <= next_pos[1] < cols and not line_crosses_cracks(current_pos, next_pos, img_array): |
|
|
|
rr, cc = line(current_pos[0], current_pos[1], next_pos[0], next_pos[1]) |
|
img_array[rr, cc] = 255 |
|
grown_crack_count += len(rr) |
|
current_pos = next_pos |
|
current_steps += 1 |
|
else: |
|
|
|
break |
|
|
|
return img_array, {'original_crack_count': original_crack_count, 'grown_crack_count': grown_crack_count} |
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
k = 8 |
|
m = 0.1 |
|
min_steps = 50 |
|
max_steps = 200 |
|
img_path = '/data/leiqin/diffusion/huggingface_diffusers/crack_label_creator/random_walk/thindata_256/2.png' |
|
img = Image.open(img_path) |
|
img_array = np.array(img) |
|
length = 2 |
|
|
|
|
|
result_img_array_mod, pixels_dict = random_walk(img_array.copy(), k, m, min_steps, max_steps, length) |
|
|
|
|
|
result_img_mod = Image.fromarray(result_img_array_mod.astype('uint8')) |
|
|
|
|
|
result_img_path_mod = 'resutls.png' |
|
result_img_mod.save(result_img_path_mod) |
|
print(pixels_dict) |
|
|