LSDM / evolution.py
QinLei086's picture
Upload 28 files
15acbf0 verified
raw
history blame
4.44 kB
import random
import math
import numpy as np
from PIL import Image
from skimage.draw import line
from skimage import morphology
import cv2
def line_crosses_cracks(start, end, img):
rr, cc = line(start[0], start[1], end[0], end[1])
# Exclude the starting point from the line coordinates
if len(rr) > 1 and len(cc) > 1:
return np.any(img[rr[1:], cc[1:]] == 255)
return False
def random_walk(img_array, k=8, m=0.1, min_steps=50, max_steps=200, length=2, degree_range=30, seed=None):
if seed is not None:
random.seed(seed)
np.random.seed(seed)
img_array = cv2.ximgproc.thinning(img_array)
rows, cols = img_array.shape
# Find all white pixels (existing cracks)
white_pixels = np.column_stack(np.where(img_array == 255))
original_crack_count = len(white_pixels) # Count of original crack pixels
# Select k random starting points from the white pixels
if white_pixels.size == 0:
raise ValueError("No initial crack pixels found in the image.")
if k > len(white_pixels):
raise ValueError("k is greater than the number of existing crack pixels.")
initial_points = white_pixels[random.sample(range(len(white_pixels)), k)]
# Initialize step count for each initial point with a random value between min_steps and max_steps
step_counts = {i: random.randint(min_steps, max_steps) for i in range(k)}
# Initialize main direction for each initial point (0 to 360 degrees)
main_angles = {i: random.uniform(0, 360) for i in range(k)}
grown_crack_count = 0 # Count of newly grown crack pixels
# Start the random walk for each initial point
for idx, point in enumerate(initial_points):
current_pos = tuple(point)
current_steps = 0
while current_steps < step_counts[idx]:
# Check the crack ratio
current_ratio = np.sum(img_array == 255) / (rows * cols)
if current_ratio >= m:
return img_array, {'original_crack_count': original_crack_count, 'grown_crack_count': grown_crack_count}
# Generate a random direction within the fan-shaped area around the main angle
main_angle = main_angles[idx]
angle = math.radians(main_angle + random.uniform(-degree_range, degree_range))
# Determine the next position with the specified length
delta_row = length * math.sin(angle)
delta_col = length * math.cos(angle)
next_pos = (int(current_pos[0] + delta_row), int(current_pos[1] + delta_col))
# Check if the line from the current to the next position crosses existing cracks
if 0 <= next_pos[0] < rows and 0 <= next_pos[1] < cols and not line_crosses_cracks(current_pos, next_pos, img_array):
# Draw a line from the current position to the next position
rr, cc = line(current_pos[0], current_pos[1], next_pos[0], next_pos[1])
img_array[rr, cc] = 255 # Set the pixels along the line to white
grown_crack_count += len(rr) # Update the count of grown crack pixels
current_pos = next_pos
current_steps += 1
else:
# If the line crosses existing cracks or the next position is outside the boundaries, stop the walk for this point
break
return img_array, {'original_crack_count': original_crack_count, 'grown_crack_count': grown_crack_count}
# The rest of the test code remains the same.
# You can use this function in your test code to generate the image and get the counts.
# test code
if __name__ == "__main__":
# Updated parameters
k = 8 # Number of initial white pixels to start the random walk
m = 0.1 # Maximum ratio of crack pixels
min_steps = 50
max_steps = 200
img_path = '/data/leiqin/diffusion/huggingface_diffusers/crack_label_creator/random_walk/thindata_256/2.png'
img = Image.open(img_path)
img_array = np.array(img)
length = 2
# Perform the modified random walk
result_img_array_mod, pixels_dict = random_walk(img_array.copy(), k, m, min_steps, max_steps, length)
# Convert the result to an image
result_img_mod = Image.fromarray(result_img_array_mod.astype('uint8'))
# Save the resulting image
result_img_path_mod = 'resutls.png'
result_img_mod.save(result_img_path_mod)
print(pixels_dict)